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Motivations

 Compared to visible spectrum cameras, Infrared (IR) imaging
enables more robust action recognition due to lower
sensitivity to lighting conditions and appearance variability

* While action recognition task on videos collected from
visible spectrum imaging has received much attention,
action recognition in IR videos is significantly less explored



Our Approach

___________________________________________

* We develop a two-stream 3D CNN to
learn spatiotemporal features from A
infrared videos. This two-stream model | H[ﬁ“"‘”“““ﬁ]
learns representations that capture ‘T (so
spatial and temporal information
simultaneously
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representations for infrared videos

___________________________________________

* We pretrained 3D CNN models on the large-scale Sports-1M action dataset
with videos from the visible light spectrum, and finetuned them on the
infrared dataset.



3D Convolutional Neural Network with
Discriminative Code Layer

 We add a discriminative code layer on top of the last fully-
connected layer. The overall loss function in network

training:
L=L.+aly

> Lc is the softmax classification loss
> Ld is the discriminative code loss
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The input dimensions for

both IR and flow streams are
batch_sizex3x16x128x171 Discriminative Code layer /




e Discriminative code loss

Lqg= Ld(X&nH); y) = la"™ — Ax"™ 3,

where x(™ is output of the n-th layer, and g™ is the target discriminative code

or p-hot label encoding.

« Target discriminative code 8

v Each neuron is associated with a certain class label
v' ideally, only activates to samples from that class.

For example, given six neurons {d,...d;} and five samples {y;...ys},
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Experimental Results

Evaluated datasets
v InfAR video dataset (12 action classes with 50 videos in each class)
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Baselines
v" Low-level descriptor features

o dense SIFT (D-SIFT), opponent SIFT (O-SIFT), and improved dense trajectories
features (IDT)

v" Semantic concept/attribute features

o 2,784 concept detectors trained on the VideoStory dataset using D-SIFT, O-SIFT or
IDT, separately.



Experimental Results

* Recognition performance comparisons in terms of average precisions (%)

Method AP (%)
D-SIFT [1] 46.7
D-SIFT based concepts 46.7
O-SIFT [21] 47.5
O-SIFT based concepts 47.1
IDT [24] 43.3
IDT based concepts 44.6
Early fusion of all concepts 47.5
Late fusion of all features 47.9

* Recognition results of 3D-CNNs trained with or without discriminative
code loss, and using different classification methods

Method AP (%)

IR net without DCL 48.75

IR net (softmax) 52.91

IR net (k-NN) 54.58

Flow net without DCL 69.58

Flow net (softmax) 72.91
Flow net (k-NN) 75.42 A —— .
Two-stream-CNN-1 [5] 32.08 «1 /"‘I::IE{Y:?':f':['_[_?f:q]:'_('_I'_Fi'-_I-zl':_jl_s_):\fi)'_:%_?::_S_l'tl'_!'\_l'::::::::::::::::_i
Two-stream-CNN-2 [5] 76.66 <____‘ Two-stream (motion-history-image+Flow) !
- : L 2D-CNN_ ]




Experimental Results

e Visualization of three learned neurons for action ‘fight’ from the discriminative
code layers in the IR and flow nets. Input is a 16-frame sequence of randomly
initialized images

Neurons 0-2, assigned to class ‘fight’ (first three rows: IR net, other rows: flow net)



Experimental Results
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The last frame of 16-frame long optimized image sequence, the other 11 classes




Conclusion

* We introduce a two-stream 3D convolutional neural
network for action recognition in infrared videos.

* Each stream was trained with softmax classification
loss and discriminative code loss making the

extracted representations of infrared videos become
more discriminative.

* Both nets are initialized by pretraining on high-
resource visible spectrum videos, and finetuned on
the low-resource infrared videos.



Thank you!



Experimental Results

Recognition performances of fusion with 3D CNN features from IR and
Flow nets

Method AP (%)
_____ Latefusionl | 4
Lo Late fusion2 ____ | __ 17

Single-layer NN fusion | 71.25
Two-layer NN fusion 70.42

Visualization of learned discriminative codes of testing videos
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(a) IR stream (b) Flow stream



Network Training

 Compared to standard CNN, the gradient term % changes, and
two gradient terms 9L % are introduced.
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* Once 8—1;, is known,
ox(n)
backward recurrence:
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