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Motivations

• Compared to visible spectrum cameras, Infrared (IR) imaging 
enables more robust action recognition due to lower 
sensitivity to lighting conditions and appearance variability

• While action recognition task on videos collected from 
visible spectrum imaging has received much attention, 
action recognition in IR videos is significantly less explored



Our Approach

• We develop a two-stream 3D CNN to
learn spatiotemporal features from
infrared videos. This two-stream model
learns representations that capture
spatial and temporal information
simultaneously
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• We combine the discriminative code loss
with softmax classification loss, to train
the 3D CNN. This discriminative code
layer generates class-specific
representations for infrared videos

• We pretrained 3D CNN models on the large-scale Sports-1M action dataset
with videos from the visible light spectrum, and finetuned them on the
infrared dataset.



3D Convolutional Neural Network with 
Discriminative Code Layer

• We add a discriminative code layer on top of the last fully-
connected layer. The overall loss function in network 
training:
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• Discriminative code loss

where  is output of the n-th layer, and q(n) is the target discriminative code 

or p-hot label encoding.

• Target discriminative code §

 Each neuron is associated with a certain class label 

 ideally, only activates to samples from that class.

For example, given six neurons {d1…d6}  and five samples {y1…y5}, 
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§ Z. Jiang, Y. Wang, L. Davis, W. Andrews, V. Rozgic. "Learning Discriminative Features via Label Consistent 
Neural Network”. WACV, 2017

group1, Class 1

group2, Class 2

group3, Class 3

Class 1 Class 2 Class 3



Experimental Results
• Evaluated datasets

 InfAR video dataset (12 action classes with 50 videos in each class)

• Baselines
 Low-level descriptor features 

o dense SIFT (D-SIFT), opponent SIFT (O-SIFT), and improved dense trajectories 
features (IDT)

 Semantic concept/attribute features 

o 2,784 concept detectors trained on the VideoStory dataset using D-SIFT, O-SIFT or 
IDT, separately. 
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Experimental Results
• Recognition performance comparisons in terms of average precisions (%)

• Recognition results of 3D-CNNs trained with or without discriminative 
code loss, and using different classification methods

Two-stream (IR+Flow) 2D-CNN 

Two-stream (motion-history-image+Flow) 
2D-CNN



Experimental Results
• Visualization of three learned neurons for action ‘fight’ from the discriminative 

code layers in the IR and flow nets. Input is a 16-frame sequence of randomly 
initialized images 

Neurons 0-2, assigned to class ‘fight’ (first three rows: IR net, other rows: flow net)
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Experimental Results

The last frame of  16-frame long optimized image sequence, the other 11 classes



Conclusion

• We introduce a two-stream 3D convolutional neural 
network for action recognition in infrared videos.

• Each stream was trained with softmax classification 
loss and discriminative code loss making the 
extracted representations of infrared videos become 
more discriminative. 

• Both nets are initialized by pretraining on high-
resource visible spectrum videos, and finetuned on 
the low-resource infrared videos. 



Thank you!



Experimental Results
• Recognition performances of fusion with 3D CNN features from IR and 

Flow nets

• Visualization of learned discriminative codes of testing videos

(a) IR stream (b) Flow stream



Network Training
• Compared to standard CNN, the gradient term               changes, and 

two gradient terms         ,                 are introduced.

• Once              is known,              and              can be computed using the 

backward recurrence:


