

Learning Spatiotemporal Features for Infrared Action Recognition with 3D Convolutional Neural Networks

Zhuolin Jiang, Viktor Rozgic, Sancar Adali

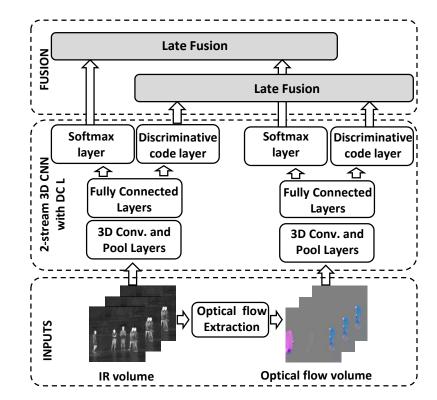
07-21-2017

Motivations

- Compared to visible spectrum cameras, Infrared (IR) imaging enables more robust action recognition due to lower sensitivity to lighting conditions and appearance variability
- While action recognition task on videos collected from visible spectrum imaging has received much attention, action recognition in IR videos is significantly less explored

Our Approach

- We develop a two-stream 3D CNN to learn spatiotemporal features from infrared videos. This two-stream model learns representations that capture *spatial* and *temporal* information simultaneously
- We combine the *discriminative code loss* with softmax classification loss, to train the 3D CNN. This discriminative code layer generates class-specific representations for infrared videos



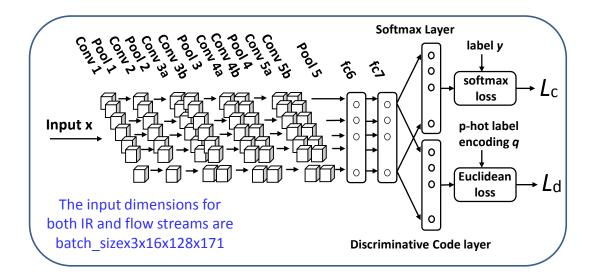
• We pretrained 3D CNN models on the large-scale Sports-1M action dataset with *videos from the visible light spectrum*, and finetuned them on the infrared dataset.

3D Convolutional Neural Network with Discriminative Code Layer

 We add a *discriminative code layer* on top of the last fullyconnected layer. The overall loss function in network training:

$$L = L_c + \alpha L_d$$

- \succ L_c is the softmax classification loss
- Ld is the discriminative code loss



Discriminative code loss

$$L_d = L_d(\mathbf{x}_d^{(n+1)}, y) = \|\mathbf{q}^{(n)} - \mathbf{A}\mathbf{x}^{(n)}\|_2^2,$$

where $\mathbf{x}^{(n)}$ is output of the n-th layer, and $q^{(n)}$ is the target discriminative code or p-hot label encoding.

• Target discriminative code §

- $\checkmark\,$ Each neuron is associated with a certain class label
- $\checkmark\,$ ideally, only activates to samples from that class.

For example, given six neurons $\{d_1...d_6\}$ and five samples $\{y_1...y_5\}$,

$$\mathbf{Q}^{(l)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \text{group1, Class 1} \\ \text{d2} \\ \text{d3} \\ \text{d4} \end{bmatrix} \text{group2, Class 2} \\ \text{d4} \\ \text{d5} \\ \text{d6} \end{bmatrix} \text{group3, Class 3}$$

[§] Z. Jiang, Y. Wang, L. Davis, W. Andrews, V. Rozgic. "Learning Discriminative Features via Label Consistent Neural Network". WACV, 2017

- Evaluated datasets
 - InfAR video dataset (12 action classes with 50 videos in each class)

- Baselines
 - ✓ Low-level descriptor features
 - dense SIFT (D-SIFT), opponent SIFT (O-SIFT), and improved dense trajectories features (IDT)
 - ✓ Semantic concept/attribute features
 - 2,784 concept detectors trained on the VideoStory dataset using D-SIFT, O-SIFT or IDT, separately.

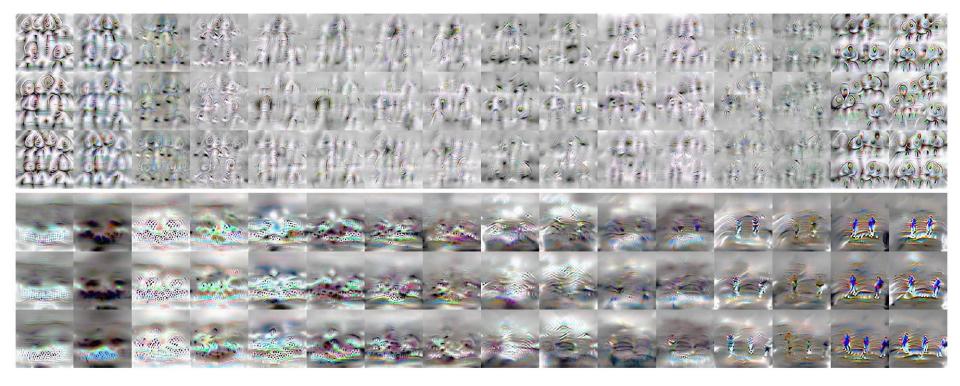
• Recognition performance comparisons in terms of average precisions (%)

Method	AP (%)
D-SIFT [1]	46.7
D-SIFT based concepts	46.7
O-SIFT [21]	47.5
O-SIFT based concepts	47.1
IDT [24]	43.3
IDT based concepts	44.6
Early fusion of all concepts	47.5
Late fusion of all features	47.9

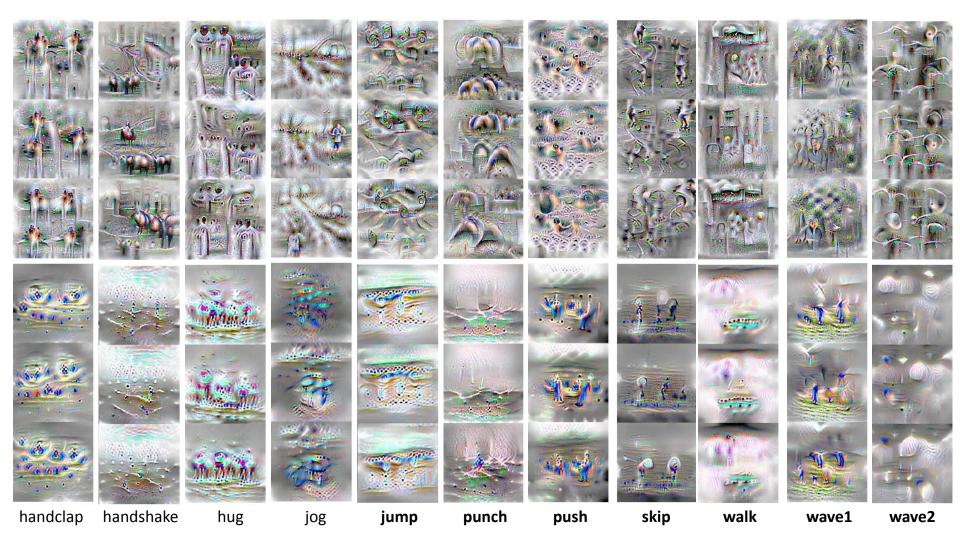
• Recognition results of 3D-CNNs trained with or without discriminative code loss, and using different classification methods

Method	AP (%)	
IR net without DCL	48.75	
IR net (softmax)	52.91	
IR net (k-NN)	54.58	
Flow net without DCL	69.58	
Flow net (softmax)	72.91	
Flow net $(k-NN)$	75.42	Two-stream (IR+Flow) 2D-CNN
Two-stream-CNN-1 [5]	32.08 🖌	Two-stream (motion-history-image+Flow)
Two-stream-CNN-2 5	76.66 🗲	2D-CNN

• Visualization of three learned neurons for action 'fight' from the discriminative code layers in the IR and flow nets. Input is a 16-frame sequence of randomly initialized images



Neurons 0-2, assigned to class 'fight' (first three rows: IR net, other rows: flow net)



The last frame of 16-frame long optimized image sequence, the other 11 classes

Conclusion

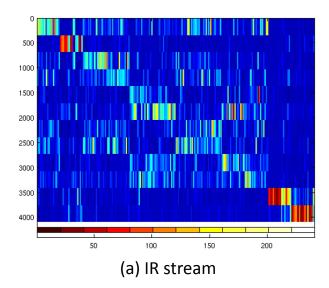
- We introduce a two-stream 3D convolutional neural network for action recognition in infrared videos.
- Each stream was trained with softmax classification loss and discriminative code loss making the extracted representations of infrared videos become more discriminative.
- Both nets are initialized by pretraining on highresource visible spectrum videos, and finetuned on the low-resource infrared videos.

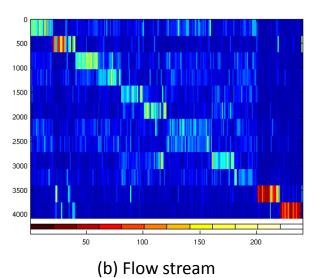
Thank you!

 Recognition performances of fusion with 3D CNN features from IR and Flow nets

Method	AP (%)
Late fusion 1	74
Late fusion 2	77.5
Single-layer NN fusion	71.25
Two-layer NN fusion	70.42

• Visualization of learned discriminative codes of testing videos





Network Training

• Compared to standard CNN, the gradient term $\frac{\partial L}{\partial \mathbf{x}^{(n)}}$ changes, and two gradient terms $\frac{\partial L}{\partial \mathbf{A}}$, $\frac{\partial L}{\partial \mathbf{x}_d^{(n+1)}}$ are introduced.

$$\frac{\partial L}{\partial \mathbf{x}_d^{(n+1)}} = \alpha \frac{\partial L_d}{\partial \mathbf{x}_d^{(n+1)}}, \quad \frac{\partial L}{\partial \mathbf{x}_c^{(n+1)}} = \frac{\partial L_c}{\partial \mathbf{x}_c^{(n+1)}}$$
$$\frac{\partial L}{\partial \mathbf{A}} = 2\alpha (\mathbf{A} \mathbf{x}^{(n)} - \mathbf{q}^{(n)}) \mathbf{x}^{(n)T}, \quad \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L_c}{\partial \mathbf{W}}$$
$$\frac{\partial L}{\partial \mathbf{x}^{(n)}} = \frac{\partial L}{\partial \mathbf{x}_c^{(n+1)}} \frac{\partial \mathbf{x}_c^{(n+1)}}{\partial \mathbf{x}^{(n)}} + 2\alpha (\mathbf{A} \mathbf{x}^{(n)} - \mathbf{q}^{(n)})^{\mathrm{T}} \mathbf{A}$$

• Once $\frac{\partial L}{\partial \mathbf{x}^{(n)}}$ is known, $\frac{\partial L}{\partial \mathbf{W}^{(i)}}$ and $\frac{\partial L}{\partial \mathbf{x}^{(i-1)}}$ can be computed using the backward recurrence:

$$\frac{\partial L}{\partial \mathbf{W}^{(i)}} = \frac{\partial L}{\partial \mathbf{x}^{(i)}} \frac{\partial \mathbf{x}^{(i)}}{\partial \mathbf{W}^{(i)}},$$
$$\frac{\partial L}{\partial \mathbf{x}^{(i-1)}} = \frac{\partial L}{\partial \mathbf{x}^{(i)}} \frac{\partial \mathbf{x}^{(i)}}{\partial \mathbf{x}^{(i-1)}}, \quad \forall i \in \{1, ..., n\}$$