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1. Overview

2. Related Work

• Goal
– To learn a dictionary with discriminative and representational power for sparse 

representation.
• Approach

– A new label consistency constraint called ‘discriminative sparse-code error’ is 
introduced and combined with reconstruction error and classification error to form a 
unified objective function for dictionary learning.

–The optimal solution is efficiently obtained using the K-SVD algorithm.
– A single compact discriminative dictionary and a universal multiclass linear classier 

(for all categories) are learned simultaneously.

3. Label Consistent K-SVD

5. Key References

4. Experiments

• Sparse Coding has been successfully applied to a variety of problems in computer 
vision such as face recognition [1]. SRC algorithm [1] employs the entire set of training 
samples to form a dictionary.

• K-SVD [2]: Efficiently learn an over-complete dictionary with a small size. It focuses on 
representational power, but does not consider discriminative capability.

• Discriminative dictionary learning approaches: 
Constructing a separate dictionary for each class.
Unifying the dictionary learning and classifier training into a mixed reconstructive 

and discriminative formulation [3,4]. 

 Optimization
We rewrite the objective function of LC-KSVD2 as:

Let                                         ,                 . The optimization is equivalent to

 Initialization
D0 :   K-SVD is employed within each class and the outputs of each K-SVD are combined

A0 : W0 : 

• Extended Yale
- (Randomly selected) half of the images (training) + 
the other half (testing).

• Caltech101
-102 classes 
- The number of images per category: 31~800

• Examples of sparse coding  

• AR Face
- (Randomly selected) 20 images (training) + 6 (testing)

• Experimental Setup
 Random face-based feature 

- dims: 504 (Extended Yale), 540 (AR Face)
 Spatial pyramid feature

- 1024 bases
- dims: 3000 (Caltech101)

3. Dictionary Learning



 

Dictionary Learning for Reconstruction and Sparse Coding
Let Y be a set of n-dimensional N input signals,                                       , Dictionary D is learned:

Given D, the sparse representation X of Y is:



 

Dictionary Learning for Classification
A good classifier f(x) can be obtained by determining its model parameters W:

D and W can be learned jointly:

• LC-KSVD1
 Objective function

A : a linear transformation matrix    
Q: discriminative sparse codes of input signals Y for classification

• LC-KSVD2
 Objective function:

Assume                  , then                    ,            .The above objective function is   
rewritten as

discriminative sparse-code error classification error

 An example of Q

 Classification

In general, D should be L2-normalized column
wised, i.e.                                          . 

WAD ˆ,ˆ,ˆ  Classification
For a test image yi , we first compute 
its sparse representation:

Then the classification result (i.e. the 
label j of yi ) is given by
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Class 41 in Caltech101 
(55 test images).

Y axis indicates a sum of 
absolute sparse codes.
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