Learning A Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD

1. Overview

Goal

- To learn a dictionary with discriminative and representational power for sparse representation.

- A new label consistency constraint called 'discriminative sparse-code error' is introduced and combined with reconstruction error and classification error to form a unified objective function for dictionary learning.
- -The optimal solution is efficiently obtained using the K-SVD algorithm
- A single compact discriminative dictionary and a universal multiclass linear classier (for all categories) are learned simultaneously.

2. Related Work

- Sparse Coding has been successfully applied to a variety of problems in computer vision such as face recognition [1]. SRC algorithm [1] employs the entire set of training samples to form a dictionary.
- . K-SVD [2]: Efficiently learn an over-complete dictionary with a small size. It focuses on representational power, but does not consider discriminative capability.
- Discriminative dictionary learning approaches:
 - ☐ Constructing a separate dictionary for each class.
 - ☐ Unifying the dictionary learning and classifier training into a mixed reconstructive and discriminative formulation [3,4].

3. Dictionary Learning

■ Dictionary Learning for Reconstruction and Sparse Coding

Let Y be a set of n-dimensional N input signals, $Y = [y_1...y_N] \in \mathbb{R}^{n \times N}$, Dictionary D is learned:

$$< D, X > = \arg\min_{D, Y} ||Y - DX||_2^2 \quad s.t. \forall i, ||x_i||_0 \le T$$

Given D, the sparse representation X of Y is:

$$X = \arg\min_{Y} ||Y - DX||_{2}^{2} \quad s.t. \forall i, ||x_{i}||_{0} \leq T$$

· Dictionary Learning for Classification

 \square A good classifier f(x) can be obtained by determining its model parameters W:

$$W = \arg \min_{W} \sum_{i} \mathcal{L}\{h_{i}, f(x_{i}, W)\} + \lambda_{1} ||W||_{F}^{2}$$

 $\square D$ and W can be learned jointly:

$$< D, W, X > = \arg \min_{D, W, X} ||Y - DX||_2^2$$

 $+ \sum_i \mathcal{L}\{h_i, f(x_i, W)\} + \lambda_1 ||W||_F^2 s.t. \forall i, ||x_i||_0 \le T$

Zhuolin Jiang¹ Zhe Lin² Larry S. Davis¹

¹University of Maryland at College Park, MD, 20742

²Adobe Systems Incorporated, San Jose, CA, 95110

3. Label Consistent K-SVD

LC-KSVD1

□ Objective function

citive function
$$< D, A, X > = \arg\min_{D, A, X} \|Y - DX\|_2^2$$

$$+\alpha \|Q - AX\|_2^2 s.t. \forall i, \|x_i\|_0 \le T$$

□ An example of Q

A: a linear transformation matrix

Q: discriminative sparse codes of input signals Y for classification

LC-KSVD2

☐ Objective function:

$$< D, W, A, X >= \arg \min_{D,W,A,X} ||Y - DX||_2^2$$

 $+\alpha ||Q - AX||^2 + \beta ||H - WX||_2^2 s.t. \forall i, ||x_i||_0 \le T$

discriminative sparse-code error classification error

Assume X' = AX, then $D' = DA^{-1}$, $W' = WT^{-1}$. The above objective function is rewritten as $\langle D', W', X' \rangle = \arg \min_{D', W', Y'} ||Y - D'X'||_2^2$

$$+\alpha \|Q - X'\|_{2}^{2} + \beta \|H - W'X'\|_{2}^{2} s.t. \forall i, \|x_{i}\|_{0} \leq T$$

Optimization

We rewrite the objective function of LC-KSVD2 as:

$$< D, W, A, X> = \arg \min_{D, W, A, X} \| \begin{pmatrix} Y \\ \sqrt{\alpha}Q \\ \sqrt{\beta}H \end{pmatrix} - \begin{pmatrix} D \\ \sqrt{\alpha}A \\ \sqrt{\beta}W \end{pmatrix} X \|_2^2 \quad s.t. \forall i, \|x_i\|_0 \leq T$$

Let $D_{new}=(D^t,\sqrt{\alpha}A^t,\sqrt{\beta}W^t)^t$, $Y_{new}=(Y^t,\sqrt{\alpha}Q^t,\sqrt{\beta}H^t)^t$. The optimization is equivalent to $< D_{new}, X > = \arg \min_{N} \{ ||Y_{new} - D_{new}X||_{2}^{2} \} s.t. \forall i, ||x_{i}||_{0} \le T$

D_n: K-SVD is employed within each class and the outputs of each K-SVD are combined

$$A_0$$
: $A = (XX^t + \lambda_2 I)^{-1}XQ^t$ W_0 : $W = (XX^t + \lambda_1 I)^{-1}XH^t$

Classification

$\square \hat{D}.\hat{A}.\hat{W}$

In general, D should be L2-normalized column wised, i.e. $\|(d_k^t, \sqrt{\alpha}a_k^t, \sqrt{\beta}w_k^t)^t\|_2 = 1$

$$\begin{split} \hat{D} &= \{\frac{d_1}{\|d_1\|_2}, \frac{d_2}{\|d_2\|_2} \dots \frac{d_K}{\|d_K\|_2} \} \\ \hat{A} &= \{\frac{a_1}{\|d_1\|_2}, \frac{a_2}{\|d_2\|_2} \dots \frac{a_K}{\|d_K\|_2} \} \end{split}$$

$$\hat{W} = \{ \frac{w_1}{\|d_1\|_2}, \frac{w_2}{\|d_2\|_2} ... \frac{w_K}{\|d_K\|_2} \}$$

□ Classification

For a test image v. we first compute its sparse representation:

$$x_i = \arg \min_{x_i} \{ \|y_i - \hat{D}x_i\|_2^2 \}$$

 $s.t. \|x_i\|_0 < T$

Then the classification result (i.e. the label j of yi) is given by

$$j = \arg\max_{j} (l = \hat{W}x_i)$$

Extended Yale

the other half (testing).

4. Experiments

Experimental Setup

- ☐ Random face-based feature
- dims: 504 (Extended Yale), 540 (AR Face)
- □ Spatial pyramid feature
- 1024 bases
- dims: 3000 (Caltech101)

Caltech101 -102 classes

The number of images per category: 31~800

umber of train, samp.	- 5	10	15.	20 -	- 25	. 30
Malik (32)	46.6	35.8	59.1	62.0	-	66.20
Luzebnik [15]	67	-	56.4			64.6
Griffin [11]	44.2	54.5	59.0	63.3	65.B	67.60
Strani (2)	-		65.0	+	-	70.40
Granman [14]			61.0			69.10
Venkatesh [24]	-	+	42.0	+		
Gemert [8]						64.16
Yang [29]	0.00	- F-1	67.0			73.20
Wang [27]	51.15	59.77	65.43	67,74	70.16	73,44
SRC [28]	48.8	: 60.1	64.9	67.7	69.2	70.7
K-SVD [1]	49.X	59.8	65.2	68.7	71.0	73.2
D-KSVD [33]	10.6	39.5	65.1	58.5	71.1	73.0
LC-KSVD1	53.5	61.9	66.8	70.3	72.1	73.4
LC-KSVD2	54.0	63.1	67.7	70.5	72.3	73.6

AR Face

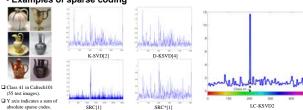
- (Rand (testing)

Method	Acc. (%	
K-SVD(5 per person) [1]	86.5	
D-KSVD(5 per person) [33]	88.8	
SRC(all train, samp.) [28]	97.5	
SRC*(5 per person) [28]	66.5	
LLC(30 local bases) [27]	69.5	
LLC(70 local bases) [27]	88.7	
LC-KSVD1(5 per person)	92.5	
LC-KSVD2(5 per person)	93.7	
LC-KSVD2(all train, samp.)	97.8	

- (Randomly selected) half of the images (training) +

Method	Avg. Time (ms)		
SRC(all training samples) [28]	83.79		
SRC*(5 per person) [28]	17.76		
LC-KSVD1(5 per person)	0.541		
LC-KSVD2(5 per person)	0.479		

· Examples of sparse coding



5. Key References

- 1. J. Wright, A. Yang, A. Ganesh, S. Sastry and Y. Ma. Robust face recognition via sparse representation, TPAMI 2009.
- 2. M. Aharon, M. Elad and A. Bruchstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Siq. Proc., 2006.
- 3. D. Pham and S. Venkatesh, Joint learning and dictionary construction for pattern recognition. CVPR 2008.
- 4. Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition. CVPR 2010.