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Abstract rank matrix recovery to remove noise from the training data

An approach to learn a structured low-rank represen- class by class. This process becomes tedious as the class
tation for image classification is presented. We use a su-Number grows, as in face recognition. Traditional PCA and
pervised learning method to construct a discriminative and SRC are then employed for face recognition. They sim-
reconstructive dictionary. By introducing an ideal regu- Ply use the whole training set as the dictionary, which is
larization term, we perform low-rank matrix recovery for inefficient and not necessary for good recognition perfor-
contaminated training data from all categories simultane- mance [.2, 35. [19] presents a discriminative low-rank
ously without losing structural information. A discrimina  dictionary learning for sparse representation (DLBR) to
tive low-rank representation for images with respect to the learn a low-rank dictionary for sparse representatioretlas
constructed dictionary is obtained. With semantic struc- face recognition. A sub-dictionar®; is learned for each
ture information and strong identification capability, shi ~ class independently; these dictionaries are then combined
representation is good for classification tasks even using at0 form a dictionaryD = [Dy, Dy, ...Dy] whereN is the
simple linear multi-classifier. Experimental results demo  number of classes. Optimizing sub-dictionaries to be low-

strate the effectiveness of our approach. rank, however, might reduce diversity across items within
. each sub-dictionary. It results in a decrease of the dictio-
1. Introduction nary’s representation power.

Recent research has demonstrated that sparse coding (or e present a discriminative, structured low-rank frame-
sparse representation) is a powerful image representatioerorkfor'_mage cla55|f|ca_t|on. Lab_el |_nformat|on f_rom train
model. The idea is to represent an input signal as a lin-iNg data is incorporated into the dictionary learning pesce
ear combination of a few items from an over-complete dic- Py @dding an ideal-code regularization term to the objectiv
tionary D. It achieves impressive performance on image function of dictionary learning. Unlikel[], the d|9t|onary .
classification 29, 27, 3, 9]. Dictionary quality is a critical ~ '€&rned by our approach has good reconstruction and dis-
factor for sparse representations. The sparse repreisentat  Crimination capabilities. With this high-quality dictiary,
based coding (SRC) algorithn2 ]| takes the entire train- W€ are able to learn a sparse and structural representation
ing set as dictionary. However, sparse coding with a large by aqlding a sparseness criteria into the low-rank objective
dictionary is computationally expensive. Hence some ap-function. Images W|th_|n a glass have a low-rank structure,
proachesT, 27, 20, 2] focus on learning compact and dis- and sparsity helps to |der!t|fy an image’s class label. .Good
criminative dictionaries. The performance of algorithms récognition performance is achieved with only one simple
like image classification is improved dramatically with a Multi-class classifier, rather than learning multiple sias
well-constructed dictionary and the encoding step is effi- fiers for each pair of classesd, 21, 2(]. In contrast to the
cient with a compact dictionary. The performance of these Prior work [5, 1] on classification that performs low-rank
methods deteriorates when the training data is contantinate '€COVery class by class during training, our method pro-
(i.e. occlusion, disguise, lighting variations, pixel corrup- C€SS€S all training data simultaneously. Compared to other
tion). Additionally, when the data to be analyzed is a set of dictionary learning methodsi, 33, 27, 29] that are very
images which are from the same class and sharing commorensitive to noise in training images, our dictionary léagn
(correlated) features (e.g. texture), sparse coding watilld ~ @/gorithm is robust. Contaminated images can be recovered
be performed for each input signal independently. This doesduring our dictionary learning process. The main contribu-
not take advantage of any structural information in the set. tions of this paper are:

Low-rank matrix recovery, which determines a low-rank ~ ® We present an approach to learn a structural low-rank
data matrix from corrupted input data, has been success- ~ and sparse image representation. By incorporating im-

fully applied to applications including salient object de- age class information, this approach encourages im-
tection 4], segmentation and grouping, 13, 6], back- ages from the same class to have similar representa-
ground subtraction7], tracking [34], and 3D visual recov- tions. .The !earned representation can be used for clas-
ery [13, 31]. However, there is limited works, 1] using sification directly.

this technique for multi-class classificatior] juses low- e We presenta supervised training algorithm to construct



a discriminative and reconstructive dictionary, which is sparse coding, low-rank and sparse matrix decomposition.
used to obtain a low-rank and sparse representation forA linear SVM classifier is used for the final classification.
images. Compared to previous work, our approach effectively
constructs a reconstructive and discriminative dictignar
from corrupted training data. Based on this dictionary,
structured low-rank and sparse representations are kbarne
for classification.

e The algorithm computes a low-rank recovery for all
training samples simultaneously while preserving in-
dependence across different classes in a computation
ally efficient manner.

e Our image classification framework is robust. It out- 2- LOW-rank Matrix Recovery
performs state-of-the-art methods even when training  Suppose a matriX can be decomposed into two matri-
and testing data are badly corrupted. ces,j.e, X = A+ E, whereA is a low-rank matrix and is
1.1. Related Work a sparse matrix. Low-rank matrix recovery aims at finding

Sparse representation has been widelv used for ima eA from X. It can be viewed as an optimization problem:
P P I widely u imag decomposing the input into A + E, minimizing the rank

classification. 26] has shown that sparse representation .

. ) . o of A and reducing|E||o.
achieves impressive results on face recognition. The en- ) 4 4
tire training set is taken as the dictionanz9] 30] formu- v rank(A) + Al|Ello st X =A+E 1)

late a sparsity-constrained framework to model the sparseyhere) is a parameter that controls the weight of the noise
coding problem. They use a modified model to handle matrix E. However, direct optimization oflj is NP-hard.
corruptions like occlusion in face recognition. These al- [4] shows that if the rank ofd is not too large and® is
gorithms, however, don't learn a dictionary. The selection sparse, the optimization problem is equivalent to:
of thgdm’qonary, as shown irg], can strongly influence min [[All, + M|E||; stX=A+E )
classification accuracy. One of the most commonly used AE
dictionary learning method is K-SVDL]. This algorithm where||A||. is the nuclear norm (i.e., the sum of the sin-
focuses on the representation power of dictionaries. Sev-gular values) ofA. It approximates the rank of. ||E]|o
eral algorithms have been developed to make the dictionarycould be replaced with thig-norm|| E||;. As proved in {l],
more discriminative for sparse coding. 7, a dictionary low-rank and sparse components are identifiable. Under
is updated iteratively based on the results of a linear predi fairly general conditionsA can be exactly recovered from
tive classier to include structure information.Z] presents X as long asF is sufficiently sparse (relative to the rank
a Label Consistent K-SVD (LC-KSVD) algorithm to learn of A) [2€]. This model assumes that all vectorsihare
a compact and discriminative dictionary for sparse coding. coming from a single subspace 5] [uses this technique
These methods show that performance is improved dramatto remove noise from training samples class by class; this
ically with a structured dictionary. However, if the traigj process is computationally expensive for large numbers of
data is corrupted by noise, their performance is diminished classes. Moreover, structure information is not well pre-
Using low-rank matrix recovery for denoising has at- served. §] solves this problem by promoting the inco-
tracted much attention recently. Wright introduced the- Ite  herence between different classes. A regularization term
ative Thresholding Approachif] to solve a relaxed convex 73, ; ||AJTAi||% is added to function2). It needs to be
form of the problem. The Accelerated Proximal Gradient updated wheneved; is changed. This is complicated and
Approach is described in1[, 26]. The Dual Approach in  might not be helpful for classification.
[16] tackles the problem via its dual. Applying augmented  Consider the problem of face recognition. Here, the
Lagrange multipliers (ALM), Lin 5] proposed RPCA via  dataset is a union of many subjects; samples of one subject
the Exact and Inexact ALM Method. Promising results have tend to be drawn from the same subspace, while samples of
been shown in many application®/] 35, 13, 6, 34]. Lim- different subjects are drawn from different subspacég] [
ited work, however, has applied the low-rank framework to proves that there is a lowest-rank representation thaateve
solve image classification problemsS] [uses a low-rank  the membership of samples. A more general rank minimiza-
technique to remove noise from training data. Denoising tion problem [L8] is formulated as:

is implemented class by class, which gives rise to tremen- min || Z||s + A||E||2.1 (3)
dous computational cost as class number increaseq. [ Z2,E ’
enhances a sparse coding dictionary’s discriminability by stX=DZ+E

learning a low-rank sub-dictionary for each class. Thispro whereD is a dictionary that linearly spans the data space.
cess is time-consuming and might increase the redundancyrhe quality of D will influence the discriminativeness of
in each sub-dictionary, thus not guaranteeing consistehcy the representatio. [18 employs the whole training set
sparse codes for signals from the same clasd. dresents  as the dictionary, but this might not be efficient for finding
an image classification framework by using non-negative a discriminative representation in classification protdem



[19) tries to learn a structured dictionary by minimizing the
rank of each sub-dictionary. However, it reduces diversity
in sub-dictionary, weakening the dictionary’s represtota
power.

We will show that an efficient representation can be ob-
tained with respect to a well-structured dictionary. Assoc
ating label information in the training process, a discrimi
native dictionary can be learned from all training samples
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Figure 1. Optimal decomposition for classification.

simultaneously. The learned dictionary encourages images

from the same class to have similar representatioasl{e
in a low-dimensional subspace); while images from other

classes have very different representations. This leads 9 jow-

[Zi1, Zi2,...Z; n] be the representation faf; with respect
to D. ThenZ; ; denotes coefficients fob;. To obtain
rank and sparse data representatiorshould have

high recognition performance of our approach, as shown ir'disc:riminative and reconstructive power. Firstly; should

the experiment section.

3. Learning Structured Sparse and Low-rank
Representation

To better classify images even when training and test-
ing images have been corrupted, we propose a robust supe
vised algorithm to learn a structured sparse and low-rank
representation for images. We construct a discriminative
dictionary via explicit utilization of label informatiorrém
the training data. Based on the dictionary, we learn low-
rank and sparse representations for images. Classifidation
carried out directly on these discriminative represeaiesti

3.1. Problem Statement

We are given a data matriX = [X;, X, ..., X | with
N classes wheré&; corresponds to clags X may be con-
taminated by noise (occlusion, corruption, illuminatiof d
ferences, etc). After eliminating noise, samples withichea
classi will demonstrate similar basic structurg [LE]. As
discussed before, low-rank matrix recovery helps to decom-
pose a corrupted matriX into a low-rank componendZ
and a sparse noise componéhti.e, X = DZ + E. With
respect to a semantic dictionaby, the optimal representa-
tion matrix Z for X should be block-diagonal f:
Z: 000
07300
00..0
000 Zy
Based on the above discussion, it is possible to learn

L

AR

. . : 2
low-rank and sparse representations for images. Low rank- it [[Z][« + [ E[[1 + 5][Z][1 + of|Z = Ql[F

ness reveals structure information. Sparsity identifieiskwvh
class an image belongs to. Given a dictionBrythe objec-
tive function is formulated as:

in || Z]]. + \|E Z
min || Z{l. + AllE[2 + 511 Z]]2

st X=DZ+F
where), /5 controls the sparsities of the noise matfand
the representation matri%, respectively].||. and||.||, de-
notes the nuclear norm and thenorm of a matrix.
The dictionaryD = [Dy, Ds,...Dy] containsN sub-
dictionaries whereD; corresponds to class Let Z; =

(4)

ideally be exclusive to each subjecfThus, representations
for images from different classes would be different. Sec-
ondly, every classis well represented by its sub-dictionary
such thatX; = D;Z; ; + E;. Z; ;, the coefficients foD;

I(_z' =+ 7), are nearly all zero.

We say (Q is an ideal representation if)
[q1, G2, ..., qr] € RE*T whereg;, the code for sample;,
is of the form of[0...1,1,1,...]' € RX (K is the dictio-
nary’s size, and’ is the total number of samples). Suppose
x; belongs to clasd, then the coefficients ig; for Dy,
are allls, while the others are alls. An example optimal
decomposition for image classification is illustrated ig-Fi
urel. Here, dataX = [X;, X5, X3] contains images from
3 classes, wher&'; contains 3 samples,, xs, z3, X2 con-
tains 4 samples,, x5, 24, x7, and X3 contains3 samples
g, Tg, X10. D has3 sub-dictionaries, and each hagems.
Although this decomposition might not result in minimal
reconstruction error, low-rank and spar@es an optimal
representation for classification.

With the above definition, we propose to learn a seman-
tic structured dictionary by supervised learning. Based on
label information, we construe® in block-diagonal form
for training data. We add a regularization tefif — Q||%
to include structure information into the dictionary leigugn
process. A dictionary that encouragéso be close td is
preferred. The objective function for dictionary learnisg
defined as follows:

(%)

st X=DZ+F
wherea controls the contribution of regularization term.

3.2. Optimization

To solve optimization problend], we first introduce an
auxiliary variablelV to make the objective function separa-
ble. Problem$) can be rewritten as:

uin {|Z][, + N|E| + BIW[L +allW = QI (6)
st X=DZ+EW=2Z



The augmented Lagrangian functiérof (6) is:
L(Z,VV,E,D,Yh}@,/L)

1211+ NElL + BIW 11 + ol [W = Q[
+ <Y, X-DZ-E>4+<Y9,Z-W >

w
+5(1X = DZ = Bl +11Z = WI[7)
where< A, B >= trace(A'B).

The optimization for problent] can be divided into two
subproblems. The first subproblem is to compute the opti-
mal Z, E for a given dictionaryD. If we seta = 0, this
is exactly the optimization problem frond); The second

subproblem is to solve dictionafy for the givenZ, E cal-
culated from the first subproblem.

(7)

3.2.1 Computing Representatior”Z Given D

With the currentD, we use the linearized alternating direc-
tion method with adaptive penalty (LADMAP)Y, 36] to
solve forZ andE. The augmented Lagrangian functiaf) (
can be rewritten as:

L(Z,W,E,D,Yy, Yy, 1)
12| + MBI + BIW (L + o |W = Q[

1
+h(Z,W,E, D, Y1, Ya, 1) — @amné +1Ya|13)

(8)

whereh(Z, W, E, D,Y1,Ya, i)

=4(IX-DZ-E+ Y%’ +|1Z-W+2|)

The quadratic ternh is replaced with its first order ap-
proximation at the previous iteration step adding a proxi-
mal term [L7]. The function is minimized by updating each
of the variablesZ, W, E one at a time. The scheme is as
follows:

27 = argmin||Z||.+ <Y{,X - DZ/ - BV >
+<Yy, 2 Wi > +§(||X -z
—EI|% 4 (|27 — W)
= argmin||Z||. + 012 - /|
<V h(Z W BT Y Y ), 2 — 77 >
_ argmzin%HZH* + %IIZ— Z7+ [ - DT(X -
D7 Ei 4 Y?lj) +(Z-W 4 %j)]/nIIfw(%
Witl — arg min 5|1, +al|W - Q|3

+ <Y Z-w> Lz —w;

1 2
= i W]l + =||W —
arg min 2a—|—u|| I+ 3l (2a+uQ
— V) + 7|3 10

Bt argmin A |1+ < Y/, X -DZ"*' —E >
+%||X—DZJ’+1 ~B|%

A 1 1
arg min ;||E||1 + §||E - (;Yf +X

—DZ7M||% (11)
whereV zh is the partial differential of h with respect 0.
n = ||D||3. The calculations are described in Algoritdm

Algorithm 1 Low-Rank Sparse Representation via Inexact
ALM
Input: Data X, Dictionary D, and Parameters (3, «
Output: Z, W, E
Initialize: Z° = W° = E* = Y =YQ = 0,p =
1.1,e = 1077, ftypas = 1030
while not converged; < maxlIterZ do
fix W, E and update variablg according to 9)
fix Z, E and update variabld” according to {0)
fix Z, W and update variablg according to {1)
update the multipliers:
Y™ =Y + u(X — D27 — EY)
VI =YY+ (27 - W)
updatey:
= min(fmaz, pﬂ)
check the convergence conditions:
| X — DZ7 — F'||oo < €,||127 = W|| <€
end while

3.2.2 Updating Dictionary D with Fixed Z, W, E
With fixed Z, W and E, D is the only variable in this sub-
problem. So ) can be rewritten as:

L(Z,W, E, D, Y1, Y2, 1) (12)
<Y1.X -DZ-E> +§(||X—DZ—E||;"m

+1Z = Wl[z) + C(Z,E,W,Q)
where C(Z, E,W,Q) is fixed. This equation1Q) is a
qguadratic form in variablé, so we can derive an optimal
dictionary D“rdete immediately. The updating scheme is:
DiJrl _ ’YDl + (1 o V)Dupdate (13)
~ is a parameter that controls the updating step. The dic-
tionary construction process is summarized in Algorithm

3.2.3 Dictionary Initialization

To initialize the dictionary, we use the K-SVD method. The
initial sub-dictionaryD; for classi is obtained by several
iterations within each training class. The input dictignar
DY is initialized by combining all the individual class dic-
tionaries,.e, D° = [Dy, Ds, ...Dy].

3.3. Classification

We use a linear classifier for classification. After the dic-
tionary is learned, the low-rank sparse representatitbob



Algorithm 2 Dictionary Learning via Inexact ALM
Input: DataX, and Parameters, 3, «, ~y «
Output: D, Z
Initialize: Initial Dictionary D°, e; = 107>
while not converged;, < maxIterD do

Recognition Rate(%)
Recognition Rate(%)

find Z, W, E with respect taD’ using Algorithm1 “* oS T [T
fix Z, W, E and update D by: “ = S v
Dupdate = (V) + (X — E)) 2T (2Z7) 7 e B TR R

Di-‘,—l _ ’)/Di + (1 _ ,Y)Dupdate
i =8 b) n=32
check the convergence conditions: @n (k)
||D* — Di||o < €4 Figure 2. Performance comparisons on the Extended Yale8. n i
the number of training images per person.

We compare our approach with LLQY], SRC [27],
LR [5], and LR with structural incoherence][ We eval-
uate the performance of the SRC algorithm using a full-size
dictionary (all training samples). For fair comparison, we
, P ) . also evaluate the results of SRC and LLC using dictionar-
vector in Zy;. We use the multivariate ridge regression joq \hose sizes are the same with ours. The result for our
model [1A1’ 37] to obtain a linear classifie: method without) is also calculated. The comparative re-
W = argmin [|H — WZ|53+ MW (14)  sults are shown in Figurg. n is the number of training
samples for each person. Our method, by taking advantage
T T 1 R ) of structure information, achieves better performanca tha
HZ7(2Z" + M) Then IabeIAfor sampléis given by: LLC, LR, LR with structural incoherence and our method
k=arg m,f”x(s =W=z) 15 without Q. It outperforms SRC when using the same-size
wheres is the class label vector. dictionary. Our result is also comparable witf.[
. Figure 3 illustrates the representations for the first ten
4. Experiments subjects. The dictionary contaifi8 items (5 for each cat-
We evaluate our algorithm on three datasets. Two ggory). The first line shows the testing images’ representa-
face databases: Extended YaleBJ[ AR [27], and one  tjon based on LR and LR with structural incoherengk |

end while

training dataX andZ,.,; of test dataX,.,; are calculated
by solving @) separately using Algorithm with o = 0.
The representation; for test sample is theith column

where H is the class label matrix 6f. This yieldsiW =

object category database: Caltech10¥][ Our ap-  Figures3(a)and3(c) are representations with the full size
proach is compared with several other algorithms including gictionary (all training sample). For comparison, we ran-
the locality-constrained linear coding method (LLC], domly selects out of 8 training samples from each class,

SRC 7], LR [5], LR with structural incoherence froni],
DLRD_SR [19 and our method without the regularization
term||Z — Q|| (our method withou)). Our method with-
out @ involves simply settingx = 0 in the dictionary learn-
ing process. Unlike most other image classification meth-
ods 23, 1, 29, training and testing data can both be cor-
rupted. Our algorithm achieves state of the art performance

4.1. Extended YaleB Database

The Extended YaleB database contains 2,414 frontal-
face images of 38 people. Taken under various controlled @ (b) © )
lighting conditions, these cropped images have $ize x
168 pixels. There are between 59 and 64 images for eac
person. Shadows due to different illumination conditions
cause variations in this dataset. We test our algorithmen th
original images as well as down-sampled imaged.(8).
This results in data sets of feature dimension 32256, 8064, :

2016 and 504. We randomly select 8 training images for ©) (0 (9) (h)

. . Figure 3. Comparison of representations for testing sasripden
each person, repeat this 5 times and report average reC08Nine first ten classes on the Extended YaleB. 5 example samples

tion accuracy. Our trained.dictionary has 5_items for each ¢or each class. (a) LR with full-size dictionary: (b) LR withc-

class. We repeat our experiments starting with 32 randomlytjonary size 50; (c) LR with structural incoherence withlfsize

selected training images and 20 dictionary items per class. dictionary; (d) LR with structural incoherence with diatary size
50; (e) SRC; (f) LLC; (g) Our method without Q; (h) Our method.




— - als : Table 1. Recognition rates on the AR
1 ‘ . ! ; - Dimension2200 | sunglass| scarf| mixed |
: _ : Our Method 87.3 | 83.4] 824

(a) (b) (c) Our Method without Q 85.1 81.3| 81.0

Figure 4. Examples of image decomposition for testing sampl | LR W. Struct. Incoh. {] 849 | 764 803
on the Extended YaleB. (a) original faces; (b) the low-raokne LR [5] 83.2 75.8| 789
ponentDZ; (c) the sparse noise componéit SRC(all train. samp.)]7] 86.8 83.2| 79.2
. .| SRC*(5 per person)|/] 82.1 72.6 | 65.5

and generate a 50-element dictionary. The corresponding | | = [25] 65.3 592 | 599

representations are shown in Figug¢b) and3(d). Figures
3(e), 3(f) and3(g) are the representations based on SRC, )
LLC with the same dictionary size and our method without differentscenarios: _ _
Q. In our learned representation, Figid), images from Sunglasses:In thls_ scenario, we consider unobscured
the same class show strong similarities. This representati images and those with sunglasses. We use seven unob-
is much more discriminative than the others. scured images from session 1 and one image with sunglass
We present some examples of decomposition results inS training samples for each person, the rest as testing. Sun
Figure4. The first three images are original faces. The mid- 9lasses cover about 20% of the face.
dle and the last three images are low-rank compoiza)( Scarf: In this scenario, we consider unobscured images
and noise componerit), respectively. We see that different and those with scarves. We use seven unobscured images
illumination conditions mainly influence noise component. from session 1 and one image with a scarf as training sam-
We also evaluate the computation time of our approach ples for each person, the r_emainder as testing. Scarves give
and LR with structural incoherence][that trains a model ~ Tise to around 40% occlusion.
class by class (Figurg(a)) and uses SRC for classification. ~ Mixed (Sunglass + Scarf): In the last scenario, we
The training time is computed as the average over the en-consider all images together (sunglass, scarf and the unob-
tire training set. The testing time, which includes both en- Scured). We use seven unobscured images from session 1,
coding and classification, is averaged over all test samplesOne image with sunglasses, and one with a scarf as training
Clearly, training over all classes simultaneously is faste Samples for each person.
than class by class if discriminativeness is preservedifor d We repeat our experiments three times for each scenario
ferent classes. Our training time is twice as fast and tgstin and average the results. Tatilesummarizes the results.

is three times faster than LR with structural incoherence. We usea = 560, A = 16, § = 15, v = 0.1 in our
experiments. Our methods are compared with L]

SRC [27], LR [5], and LR with structural incoherence][
For SRC, we measure the performance with two different

B LR with Structural
nconerence

® Our Method

recognition rate(%)

T
training testing

(@) (b)
Figure 5. Experiment results. (a) Average computation tiare
training and testing on the Extended YaleB; (b) Recognitairs .
on the AR database with pixel corruption. (a) (b) (© (d)

4.2. AR Database

The AR face database includes over 4,000 color face
images of 126 individuals, 26 images for each person in
two sessions. In each session, each person has 13 image
Among them, 3 are obscured by scarves, 6 by sunglasses,
and the remaining faces are of different facial expressions
or illumination variations which we refer to as unobscured

(e) ® ) Q)
Figure 6. Comparison of representations for testing sasrfpben

) ] : . the first ten classes on the AR for the sunglass scenario. pleam
images. Each image 655 x 120 pixels. We convertthe o each class. (a) LR with full-size dictionary; (b) LR witfic-
color images into gray scale and down-sanipte 3. Fol- tionary size 50; (c) LR with structural incoherence withl{size
lowing the protocol in §], experiments are run under three dictionary; (d) LR with structural incoherence with dictiry size
50; (e) SRC; (f) LLC; (g) Our method without Q; (h) Our method.



@ (b) (c)
Figure 8. Examples of image decomposition for testing sampl
from class 95 on the AR with 20% uniform noise. (a) corrupted
faces; (b) the low-rank componentZ; (c) the sparse noise com-
ponentE.

seven images with illumination and expression variations
from session 1 are used for training images, and the other
seven images from session 2 are used as testing images. A

(c) the sparse noise componént percentage of randomly chosen pixels from each training
Figure 7. Examples of image decomposition for testing sempl and testing image are replaced with iid samples from a uni-
from class 4 and 10 on the AR. form distribution over0, V,,...| as 6] did, whereV,,,,. is

dictionary sizes. Our approach achieves the best resudts anthe. largest p035|ble.p|xel value in the Image. The recog-
nition rates under different levels of noises are shown in

outperforms other approaches with the same dictionary size _,
by more than 3% for the sunglass scenario, 7% for the scarf19ure 5(b). The results of DLRDSR [1], FDDL [30],
scenario, and 2% for the mixed scenario. Robust PCA £6], SR [27), and SVM [26] are copied from

We visualize the representatianfor the first ten classes [1]. Our method outperforms _the other approag_rles. Fig-
under the sunglasses scenario. Ther&ard 0 = 80 train- ure8 shows some ex?mplgs of image decomposition on the
ing images and2 x 10 = 120 testing images. We use AR database with 20% uniform noise.

50 as our dictionary sizd,e., 5 dictionary items per class. 4.3. Caltech101 Database

Figures6(a) and 6(c) show the representations of LR and The Caltech101 database contains over 9000 images
LR method without structural incoherence with a full-size from 102 classes. 101 classes are of animals, flowers, trees,
dictionary. In Figures5(b) and6(d), we randomly pick 5  etc. and there is a background class. The number of images
dictionary items for each class, and use this reduced dic-in each class is between 31 and 800. We evaluate our meth-
tionary to learn sparse codes. For comparison purposespds using spatial pyramid features and run experiments with
we also choosg0 as the dictionary size in LLC and SRC* 15 and 30 randomly chosen training images.

to learn the representations shown in Figusés) and6(f). Figure 9 shows the representations of 15 testing sam-
The testing images automatically generate a block diagonalples which are randomly selected from classes 8. Our
structure in our method, which is absent in other methods. representation clearly reveals structure informatioaulgh

Figure 7 shows image decomposition examples on the representation similarity. Although the training images a
AR database. The first row shows the original gray images.visually very diverse, we are able to learn discriminative
The second is the low-rank componeht4) and the third
the noise component). Our approach separates occlu-

sions such as sunglasses and scarves from the original i
ages into the noise component.
Table 2. Recognition rates on the AR
| Dimension2200 sunglass| scarf]
@ (b) (c) (d)

Our Method 90.9 88.5
LC-KSVD [17] 78.4 63.7

In addition, we compare our results with LC-KSVID/]
using the same training samples under the sun and scarf
scenarios, using unobscured images for test. The results
is summarized in Tabl. Although associating label infor-

mation with training process, the performance of LC-KSVD _. ' : !
. - o . igure 9. Comparison of representations for testing sasrfpben
is not as good as ours S'r_lce the tramm_g Se_‘t IS smaII(.i'r aNClass 4 to 8 on the Caltech101. 15 example samples for eaxth cla
corrupted. Our approach is rqbust to noise like occlusion. (a) LR with full-size dictionary; (b) LR with dictionary s&55:
We also evaluate our algorithm on the corrupted AR face (¢) LR with structural incoherence with full-size dictiaya (d)
database following the protocol in 9. In the experiment, R with structural incoherence with dictionary size 55; (&)C;
(f) Our method without Q; (g) Our method.

(e) ® ©



Table 3. Recognition rates on the Caltech101

| number of training sampl¢ 15 | 30 | (6]
Our Method 66.1| 73.6 (71
Our Method without Q 65.5| 73.3 -

LR w. Struct. Incohf] 58.3| 65.7

LR [5] 50.3| 60.1
SRC (all train. samp.){/] | 64.9| 70.7 [
LLC[29 65.4| 73.4 [10]
representations with the constructed dictionary. "

We evaluate our approach and compare it with oth-
ers b, 25, 27]. Table3 presents classification accuracy. Our [12]
algorithm achieves the best performance. FiglOajives
examples from classes which achieve high classification act
curacy when training image ) per category. [14]

N e
‘ (]
~2
(a) yinyang, acc:100% (b) soccerball, acc:100%

(d) Motorbikes, acc:97.7%

7K r@n ’.xm:ff@wizu [ q@:u o[ .i _

(f) watch, acc:95.7%

3]

(18]

[16]

/7 ,

[17]

(18]

i 1]

(e) accordion, acc:96.0%
Figure 10. Example images from classes with high classidicat
accuracy of the Caltech101.

[20]

[21]
5. Conclusions s
We proposed a new image classification model to learn a[ ]
structured low-rank representation. Incorporating label  [23]
formation into the training process, we construct a seranti
structured and constructive dictionary. Discriminatiep+
resentations are learned via low-rank recovery even for cor [25]
rupted datasets. The learned representations reveal stru
tural information automatically and can be used for classi-
fication directly. Experiments show our approach is robust,
achieving state-of-art performance in the presence of var-’
ious sources of data contamination, including illuminatio [2g
changes, occlusion and pixel corruption.
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