A Tree-based Approach to Integrated Action Localization, Recognition and Segmentation

Third Workshop on Human Motion Understanding, Modeling, Capture and Animation

Zhuolin Jiang¹, Zhe Lin², Larry S. Davis¹

¹University of Maryland at College Park ²Adobe Systems Incorporated

Sep. 10th, 2010

University of Maryland Institute for Advanced Computer Studies

Goal & Challenges

Goal

- Propose a simultaneous approach to localize and recognize multiple action classes based on a unified tree-based framework under moving camera and dynamic backgrounds
- Challenges
 - Dynamic backgrounds
 (e.g. moving people, vehicles)
 - Moving camera
 - Occlusions
 - Appearance and illumination variations

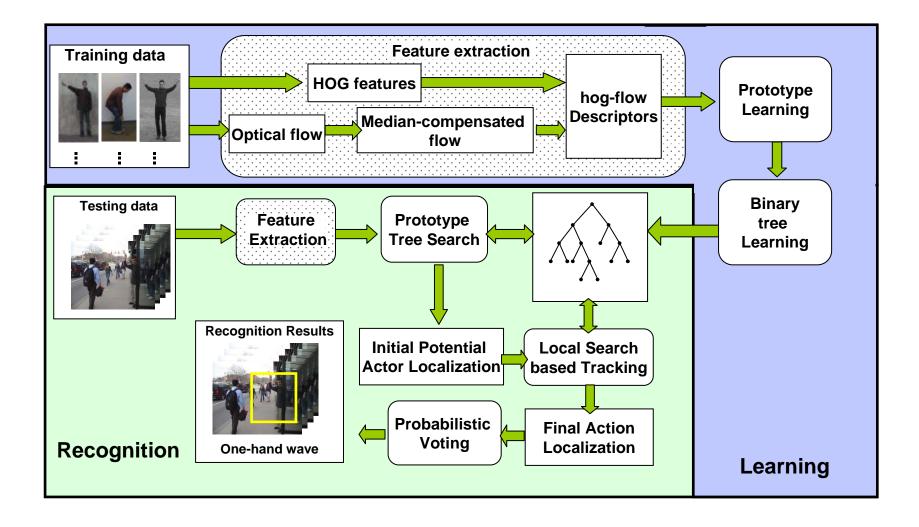
Extension of our previous approach

- HOG-based shape feature
- The prototype tree is used to simultaneously localize and recognize actions
- The probabilistic framework is constructed to determine action category labels and action prototypes

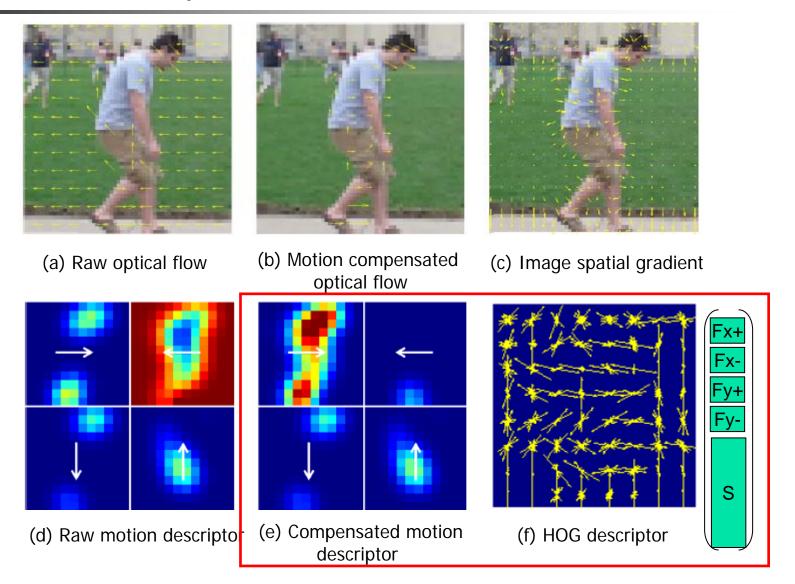
Contributions

- A simplified HOG-based shape feature is adopted to enhance the joint shape-motion descriptors proposed in our previous approach.
- A binary prototype tree based approach is introduced to efficiently localize and recognize multiple action classes.
- Action Recognition is model as a maximum probability estimation problem of the conditional probabilities of action category labels and action prototypes.

Overview



Action Representation by Hog-flow Descriptors



Tree Model Construction and Matching

- Action Prototypes
 - k-means clustering
- Tree Model Construction
 - Hierarchical k-means clustering
 - Parameter learning
 - All tree nodes: Rejection thresholds $\Theta = (\theta_1, \theta_2, ..., \theta_{n_t})$
 - Leaf node λ_i includes:
 - A rejection threshold θ_i
 - A class distribution vector $\Omega_i = (\omega_{i,1}, ..., \omega_{i,m})$
 - Training frame indices matching with λ_i

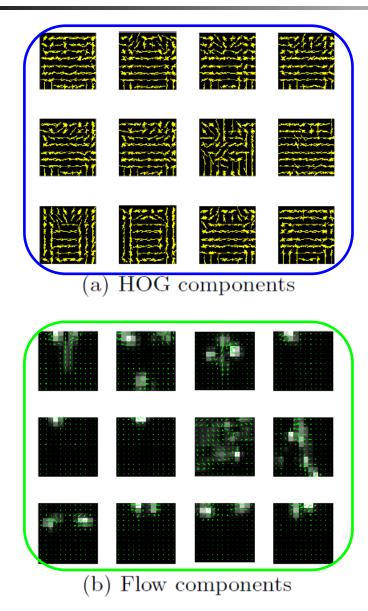
 $\theta_i = \tau D_{leaf_i}$

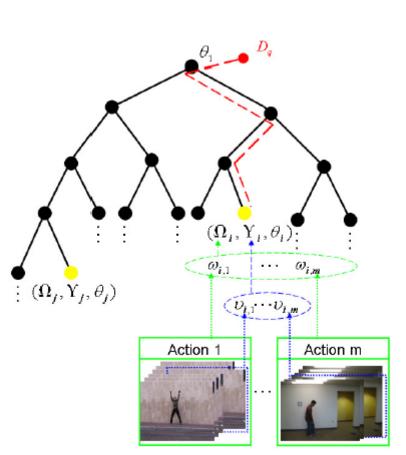
 D_{leaf_i} - maximum Euclidean distance between tree node and children leaf nodes

$$\hat{\Omega}_i = (\hat{\omega}_{i,1}, \dots, \hat{\omega}_{i,m}) \ \hat{\omega}_{i,m} = \frac{F_{i,m}}{F_m}$$

 $\rm F_{i,m}$ - number of training features from class m matching to λ_i $\rm F_m$ - number of training features in class m

Action Prototype Tree

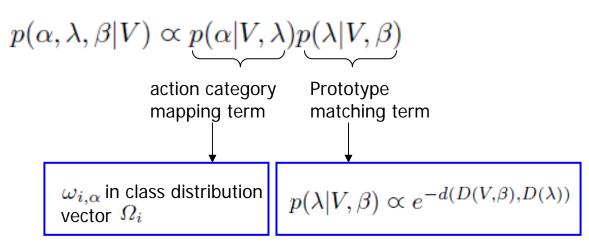




(c) Learned binary tree model

Action Recognition

Conditional probability model



- V observation r. v.
- λ prototype r. v. chosen from $\Lambda = (\lambda_1, \lambda_2 ... \lambda_k)$
- β actor location r. v. comprising image locaion (x,y) and scale s.
- α action category r.v. chosen from $A = (\alpha_1, \alpha_2 ... \alpha_m)$

Optimization problem

$$(\alpha^*, \lambda^*, \beta^*) = \arg \max_{\alpha, \lambda, \beta} p(\alpha, \lambda, \beta | V)$$

Action Recognition

- Conditional probability optimization
 - Given actor location β_t and observation V at frame t, we define a score function for the corresponding prototypeλ_i(β_t) and action category label α_i at frame t as:

$$J_t(\alpha_i) = \omega_{i,\alpha_i} e^{-d(D(V,\beta_t), D(\lambda_i(\beta_t)))},$$

• The optimal action label is:

$$\alpha_i^* = \operatorname{argmax}_{\{\alpha_i\}_{i=1...m}} \sum_{t=l_{start}}^{l_{end}} J_t(\alpha_i),$$

Action Segmentation

- Segmentation mask
 - After tree construction, each action category in *i*-th leaf node (prototype) has its own set of representative binary silhouettes {b_j}_{j=1..m}, which is identified by Y_i = (v_{i,1},..., v_{i,m}). The segmentation mask for *i*-th leaf node is defined as:

$$B_i = \sum_{j=1}^m \omega_{i,j} b_j$$

Experiments

- Hog-flow Descriptor
 - 8*8*9 hog descriptor
 - Four channels of 12*12 motion descriptor
 - Total dimension: 1152

Datasets

CMU Action Dataset

http://www.yanke.org/research.htm

- 48 training video sequences, 110 testing video sequences
- 5 action classes
- Hand-held camera, dynamic backgrounds (moving persons or vehicle in the background)

Weizmann Action Dataset

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

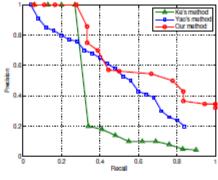
The Weizmann action dataset contains 90 videos of 10 actions performed by 9 individuals.

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-time shapes. In IEEE Trans. PAMI, 29(12):2247-2253, 2007.

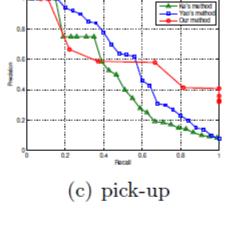
Results on the CMU Dataset

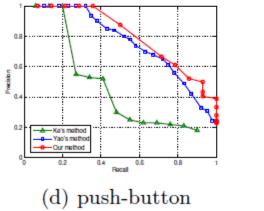
method	recog. rate (%)	avg. time (s)
500 proto.	84.55	0.86
1000 proto.	89.09	0.91
1700 proto.	89.09	0.88
2300 proto.	90	0.92
2789 proto.	100	0.89

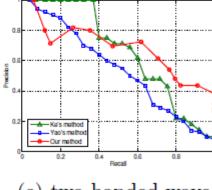




(b) one-handed-wave







(e) two-handed-wave

Results on the CMU Dataset

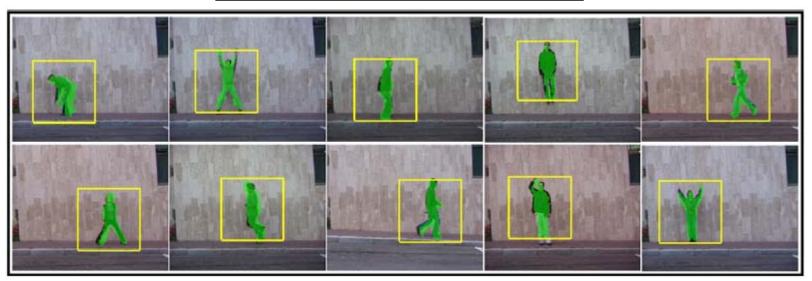
Sliding Window-based Detection Candidates (number of Det.=20)

Results on the CMU Dataset



Results on the Weizmann Dataset

method	recog. rate $(\%)$	avg. time (s)
500 proto.	91.11	0.91
1500 proto.	92.22	0.93
2500 proto.	88.89	0.94
3000 proto.	90.00	0.96
4000 proto.	94.44	0.96
all descriptors	100	0.94
Fathi [16]	100	N/A
Schindler [23]	100	N/A
Lin [9]	100	N/A
Jhuang [22]	98.8	N/A
Blank [1]	99.61	N/A
Thurau [25]	94.40	N/A



Demo on the CMU dataset

Summary

Conclusions

- The approach can yield good results for action localization and recognition in realistic scenarios with cluttered, dynamic backgrounds
- The approach does not rely on background subtraction
- Future work
 - Incorporation of scene-specific cues or high-level spatial or temporal contexts would make the approach more reliable and accurate.
 - Extending the approach to Handle more challenging cases such as the presence of multiple interested actions performed simultaneously by multiple actors

Thank you!