Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation

Guangxiao Zhang, Zhuolin Jiang, Larry S. Davis

Computer Vision Laboratory University of Maryland, College Park {gxzhang, zhuolin, Isd}@umiacs.umd.edu

Motivations

- Traditional dictionary learning focuses on minimizing the reconstruction error only, i.e.
 - $\arg\min_{D_z} ||x Dz||_2^2$
 - Sparse code z has no **discriminative** power.
- Supervised dictionary learning:
 - Learning discriminative dictionaries has shown to achieve better performance in image classification tasks.
 - □ Approach I: Learn one dictionary for each class, and combine the dictionaries together to obtain a discriminative dictionary.
 - □ <u>Approach 2</u>: Jointly learn the dictionary and the classifier. (LC-KSVD)
 - Drawbacks of supervised dictionary learning
 - □ Labeled training data is expensive and difficult to obtain.
 - □ Not suitable for large-scale dataset.
- Semi-supervised dictionary learning:
 - Learn from a few labeled training data;
 - Also learn from large amount of cheap unlabeled training data;
 - Can be cast to an online learning framework
 - \Rightarrow suitable for large-scale learning

2

Our proposal: online semi-supervised dictionary learning

Objective Function

• Objective function should encourage the dictionary to be:

X: input signals; Z: sparse codes of X with respect to D

 $Q = [q_1, ..., q_N]$, label consistency matrix; G is a linear transformation matrix

where
$$q_i = [q_i^1, ..., q_i^K]^t$$
. For example, $[0, 1, 0, ..., 1, 1]^t$

 $q_i^k = 1$ if the input signal y_i and the dictionary item d_k share the same label

A column of H, h_i , is a label vector for x_i , where non-zero position indicates the category label of x_i .

• A linear predictive classifier: f(z; W) = Wz is used in the classification.

Optimization

Initialization:

- Learn multiple class-specific dictionaries using K-SVD, and combine the items together to form the initial dictionary D₀
- Alternate between sparse coding and dictionary learning:
 - Online sparse coding:
 - □ At time t, given D_{t-1} , G_{t-1} , W_{t-1} , find the sparse code z_t for the signal x_t
 - □ For unlabeled x_t , $\mathbf{z}_t = \arg \min_{\mathbf{z} \in \mathbb{R}^K} ||\mathbf{x}_t D\mathbf{z}||_2^2$, $s.t. ||\mathbf{z}||_0 \le \varepsilon$. The orthogonal matching pursuit (OMP) algorithm is adopted.
 - \Box For labeled x_t , the sparse coding problem can be written in augmented matrix form:

$$\mathbf{z}_{t} = \arg\min_{\mathbf{z}\in\mathbb{R}^{K}} \left\| \begin{pmatrix} \sqrt{\beta}\mathbf{x}_{t} \\ \sqrt{\gamma}\mathbf{q}_{t} \\ \mathbf{h}_{t} \end{pmatrix} - \begin{pmatrix} \sqrt{\beta}D \\ \sqrt{\gamma}G \\ W \end{pmatrix} \mathbf{z} \right\|_{2}^{2} = \arg\min_{\mathbf{z}\in\mathbb{R}^{K}} ||\tilde{\mathbf{x}}_{t} - \tilde{D}\mathbf{z}||_{2}^{2},$$

 $\tilde{\mathbf{x}}_t = [\sqrt{\beta} \mathbf{x}_t^T, \sqrt{\gamma} \mathbf{q}_t^T, \mathbf{h}_t^T]^t$

 $\tilde{D} = [\sqrt{\beta}D^T, \sqrt{\gamma}G^T, W^T]^T$

which can also be solved by OMP.

- Online dictionary update:
 - \Box Given the sparse code for x_t , update the dictionary:

$$D_{t} = \arg\min_{D \in \mathcal{C}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{2} ||\mathbf{x}_{i} - D\mathbf{z}_{i}||_{2}^{2} + \lambda ||\mathbf{z}_{i}||_{0}$$

Learning from unlabeled data

• How to choose which sample in the input stream to label?

<u>Our goal</u>:

The sparse code informs us how well the current dictionary discriminates the input signal. Quantitatively, the confidence level of the discriminability is defined as:

 $ent(\mathbf{x}) = -\sum_{l=1}^{m} p_l(\mathbf{x}) \log p_l(\mathbf{x})$, where $p_l(\mathbf{x})$ is the probability of x being in class l.

Set two thresholds on entropy: "easy" points: automatic labeling; "hard" points: manual labeling.

An Outline of Our Algorithm

6

An Outline of Our Algorithm

Dictionary Update:

Classification

\Box For a test image x_i , first compute its sparse representation:

$$z_i = \arg \min_z ||x_i - Dz||_2^2 \text{ s.t.} ||z_i||_0 \le \varepsilon$$

Then the label of x_i is the index *i* corresponding to the largest element of a class label vector .

Experiment (1)

Extended YaleB database:

- Random face-based features
 - feature dims = 504 ; number of dictionary items: 6*38=228
- □ Classification accuracy comparison:

Method	K-SVD [11]	D-KSVD [5]	SRC [3]	LLC [14]	LC-KSVD [9]
Acc.	93.1	94.1	80.5	82.2	94.5
Method	LSDL [17]	ODLSC [13]	IDL [14]	Online SSDL	
Acc.	90.5	91.4	89.6	94.7	

□ Semi-supervised learning curves:

Fig. 2. Recognition performance on the Extended YaleB. (a) Recognition performance with varying number of labeled samples, where $K = 6 \times 38$ and $N = 24 \times 38$; (b) An illustration of the effect of the lower bound. The curves are obtained with the same set of parameters: α , β , γ and the same set of higher entropy thresholds.

8

Experiment (2)

Caltech 101 dataset:

- Spatial pyramid features
- feature dim. = 3000;
- number of dictionary items:10*102=1020

Training Images	5	10	15	20	25	30
Malik [28]	46.6	55.8	59.1	62.0	-	66.20
Lazebnik [29]	-	-	56.4	-	-	64.6
Griffin [27]	44.2	54.5	59.0	63.3	65.8	67.60
Irani [30]	-	-	65.0	-	-	70.40
Grauman [31]	-	-	61.0	-	-	69.10
Venkatesh [6]	-	-	42.0	-	-	-
Gemert [32]	-	-	-	-	-	64.16
Yang [2]	-	-	67.0	-	-	73.20
Wang [14]	51.15	59.77	65.43	67.74	70.16	73.44
SRC [3]	48.8	60.1	64.9	67.7	69.2	70.7
K-SVD [11]	49.8	59.8	65.2	68.7	71.0	73.2
D-KSVD [5]	49.6	59.5	65.1	68.6	71.1	73.0
IDL [14]	51.2	61.5	65.7	68.4	71.6	-
LSDL [17]	52.8	61.5	65.7	68.4	71.5	-
ODLSC [13]	52.8	61.5	65.6	68.5	71.3	72.4
LC-KSVD [9]	54.0	63.1	67.7	70.5	72.3	73.6
Online SSDL	55.0	62.6	67.2	69.6	72.4	74.3

Table 2. Recognition results using spatial pyramid features on the Caltech101. The accuracies of the other results are copied from the references.

Experiment (3) and Conclusion

Caltech 256 dataset

- Spatial pyramid features
- feature dim. = 305 (PCA applied)
- number of dictionary items: 3*256=768
- Accuracy comparison and the learning curves (right) :

Training Images	15	30	45	60
Griffin [27]	28.30	34.10	-	-
Gemert [32]	-	27.17	-	-
Yang [2]	27.73	34.02	37.46	40.14
IDL [14]	19.9	21.7	23.9	26.3
LSDL [17]	23.3	25.6	28.4	30.5
ODLSC [13]	19.3	21.3	23.6	26.1
LC-KSVD [9]	24.6	28.6	30.3	34.9
Online SSDL	27.9	31.9	34.4	36.7

- Notice that our semi-supervised method has an obvious advantage when the manual labels are few.
- As the number of manual labels increases, the advantage over others decreases, until our performance finally converges to fully-supervised methods.

Examples of sparse codes

• Caltech 101, Class 18 fans (with 61 testing frames):

- > Y-axis indicates a sum of absolute sparse codes.
- Sparse codes are expected to peak at the 18*5 = 90th, where 5 being the number of dictionary items per category and 18 being the category index.

References and Acknowledgement

• Key references

- I. J.Wright, A.Yang, A. Ganesh, S. Sastry and Y. Ma. Robust face recognition via sparse representation, TPAMI 2009.
- 2. M.Aharon, M. Elad and A. Bruchstein. K-SVD: An algorithm for designing over-complete dictionaries for sparse representation. Sig. Proc., 2006.
- 3. Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition, CVPR 2010.
- 4. J. Marial, F. Bach, J. Ponce and G. Sapiro: Online dictionary learning for sparse coding, ICML 2009
- 5. J. Want, J. Yang, K. Yu, F. Lv, T. Huang and Y. Gong: Locality-constrained linear coding for image classification, CVPR 2010
- 6. B. Xie, M. Song, D.T. : Large-scale dictionary learning for local coordinate coding BMVC, 2010
- 7. Z. Jiang, Z. Lin, and L. Davis: Learning a discriminative dictionary for sparse coding via label consistent k-svd, CVPR 2011

Acknowledgement:

This work was supported by the Army Research Office MURI Grant W911NF-09-1-0383