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Motivations 
 Traditional dictionary learning focuses on minimizing the reconstruction error only, 

i.e.  

 Sparse code 𝑧 has no discriminative power.  

 Supervised dictionary learning:  

 Learning discriminative dictionaries has shown to achieve better performance in image 

classification tasks.  

 Approach 1:  Learn one dictionary for each class, and combine the dictionaries  

   together to obtain a discriminative dictionary. 

 Approach 2:  Jointly learn the dictionary and the classifier. (LC-KSVD) 

 Drawbacks of supervised dictionary learning 

 Labeled training data is expensive and difficult to obtain. 

 Not suitable for large-scale dataset. 

 Semi-supervised dictionary learning: 

 Learn from a few labeled training data; 

 Also learn from large amount of cheap unlabeled training data; 

 Can be cast to an online learning framework  

 suitable for large-scale learning  

 Our proposal: online semi-supervised dictionary learning 
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Objective Function 

• Objective function should encourage the dictionary to be: 

 Representative : Learning for reconstruction 

 Discriminative : Learning for classification 

• Proposed optimization: 

< 𝐷, 𝐺, 𝑊, 𝑍 > = arg min
𝐷,𝐺,𝑊,𝑍
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s.t. 𝑧𝑖 0 ≤ 𝜀, ∀𝑖 

 

 

𝑋: input signals; 𝑍: sparse codes of 𝑋 with respect to 𝐷 

𝑄 = [𝑞1, … , 𝑞𝑁], label consistency matrix;  𝐺 is a linear transformation matrix 

 where  𝑞𝑖 = 𝑞𝑖
1, … , 𝑞𝑖

𝐾 𝑡
.  For example, 0,1,0, … , 1,1 𝑡 

𝑞𝑖
𝑘 = 1 if the input signal 𝑦𝑖 and the dictionary item 𝑑𝑘 share the same label 

A column of 𝐻, ℎ𝑖 , is a label vector for 𝑥𝑖 , where non-zero position indicates the category label of 𝑥𝑖 .   

 A linear predictive classifier: 𝑓 𝑧; 𝑊 = 𝑊𝑧 is used in the classification. 
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Jointly learn the dictionary 

and the classifier 



Optimization 
 Initialization: 

 Learn multiple class-specific dictionaries using K-SVD, and combine the items 

together to form the initial dictionary 𝐷0 

 Alternate  between sparse coding and dictionary learning: 

 Online sparse coding:   

 At time t, given 𝐷𝑡−1, 𝐺𝑡−1, 𝑊𝑡−1, find the sparse code 𝑧𝑡 for the signal 𝑥𝑡 

 For unlabeled 𝑥𝑡,  

The orthogonal matching pursuit (OMP) algorithm is adopted. 

 For labeled 𝑥𝑡, the sparse coding problem can be written in augmented matrix form: 

 

 

 

 which can also be solved by OMP. 

 Online dictionary update: 

 Given the sparse code for 𝑥𝑡, update the dictionary: 
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Learning from unlabeled data 
 How to choose which sample in the input stream to label? 

Our goal:    

(1) keep the manual labeling effort minimum; 

(2) keep discriminative capacity of the sparse codes. 

Key observation: 

A sparse code is a vector of coefficients of the  

corresponding  dictionary items (with labels). 

For example,  a sparse code 

𝑧𝑖 = 𝑧𝑖
1, 𝑧𝑖

2, … , 𝑧𝑖
6, 𝑧𝑖

7, … , 𝑧𝑖
12, … , 𝑧𝑖

𝐾 𝑇
 

 

 

 𝑧𝑖
𝑗
can be used to compute the probability of 𝑥𝑖 being in the same class as dictionary item 𝑑𝑗 . 

The sparse code informs us how well the current dictionary discriminates the input 

signal. Quantitatively, the confidence level of the discriminability is defined as:  

    , where  𝑝𝑙 x is the probability of x being in class 𝑙. 
 

Set two thresholds on entropy:  “easy” points: automatic labeling;   “hard” points: manual labeling. 
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𝑑1to 𝑑6: class 1 𝑑7 to 𝑑12: class 2 



An Outline of Our Algorithm 
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An Outline of Our Algorithm 



Experiment (1) 

 Extended YaleB database: 

 Random face-based features  

                       - feature dims = 504 ; number of dictionary items: 6*38=228 

 Classification accuracy comparison: 

 

 

 

 Semi-supervised learning curves: 
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Experiment (2) 

 Caltech 101 dataset: 
 Spatial pyramid features 

   - feature dim. = 3000;  

   - number of dictionary items:10*102=1020 
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Experiment (3) and Conclusion 

 Caltech 256 dataset 

 Spatial pyramid features 

      - feature dim. = 305 (PCA applied) 

  - number of dictionary items: 3*256=768 

 

 

 Accuracy comparison and the learning 

curves (right) : 
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• Notice that our semi-supervised method has an 

obvious advantage when the manual labels are few.  

• As the number of manual labels increases, the 

advantage over others decreases, until our 

performance finally converges to fully-supervised 

methods. 



 Caltech 101, Class 18 fans (with 61 testing frames): 

 

 

 

 

 

 

 

 

 Y-axis indicates a sum of absolute sparse codes. 

 Sparse codes are expected to peak at the 18*5 = 90th , where 5 being the 
number of dictionary items per category and 18 being the category index. 

Examples of sparse codes 
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