Submodular Dictionary Learning for Sparse Coding

Zhuolin Jiang, Guangxiao Zhang, Larry S. Davis

Computer Vision Laboratory
University of Maryland, College Park
{zhuolin, gxzhang, lsd}@umiacs.umd.edu

Goals

Motivations

Most of recent dictionary learning techniques are iterative batch procedures, it is relatively slow close to the minimum.

Goals

■ Learn a discriminative and representational dictionary for sparse representation efficiently using a greedy algorithm for a submodular objective set function.

Approaches

Approaches

□ A dataset is mapped into an undirected k-nearest neighbor graph G=(V, E). The dictionary learning is modeled as a graph topology selection problem. A subset of edges A is selected from initial edge set E such that the resulting graph G=(V, A), contains exactly K connected components or clusters.

Approaches

Approaches

- A monotonic and submodular objective function for dictionary learning consists of two terms: the entropy rate of a random walk on a graph and a discriminative term
- The objective function is optimized by a highly efficient greedy algorithm
- This simple greedy algorithm gives a near-optimal solution with a (1/2)-approximation bound [5].

Related Work

- Sparse Coding has been successfully applied to a variety of problems such as face recognition [1]. The SRC algorithm [1] employs the entire set of training samples to form a dictionary.
- K-SVD [2]: Efficiently learn an over-complete dictionary with a small size. It focuses on representational power, but it does not consider discrimination.
- Discriminative dictionary learning approaches:
 - Constructing a separate dictionary for each class.
 - Adding discriminative terms into the objective function of dictionary learning [3].
- The diminishing return property of a submodular function has been employed in applications such as sensor placement, clustering and superpixel segmentation [4].

Preliminaries

Submodular Set Function

A set function $F: 2^E \to R$ is submodular if

$$F(A_1 \cup \{a\}) - F(A_1) \ge F(A_2 \cup a) - F(A_2)$$

for all $A_1 \subseteq A_2 \subseteq E$ and $a \in E \backslash A_2$

diminishing return property

$$F(A_1 \cup \{a\}) - F(A_1) \ge F(A_2 \cup \{a\}) - F(A_2)$$

- Monotonic and Submodular Objective Set Function
 - It consists of an entropy rate $tern_{\mathcal{H}(A)}$ and a discriminative $term_{\mathcal{Q}(A)}$:

$$\max_{A} \mathcal{F}(A) = \mathcal{H}(A) + \lambda \mathcal{Q}(A) \text{ s.t. } A \subseteq E \text{ and } N_A \ge K,$$

where

A: selected subset of edge set E;

 N_{Δ} : number of connected components induced by A

Entropy Rate of a Random Walk

$$\mathcal{H}(A) = -\sum_{i} \mu_{i} \sum_{j} P_{i,j}(A) \log P_{i,j}(A)$$

 μ_i : Stationary probability of vertex v_i

 $P_{i,j}$: Transition probability from v_i to v_j

Discriminative Term

$$Q(A) = \frac{1}{C} \sum_{i=1}^{N_A} \max_{y} N_y^i - N_A$$

 N_{v}^{i} : Number of elements from class y in cluster i

Class Pure & A Smaller Number of Clusters (a) Disc. Fun. = -2.00 (b) Disc. Fun. = -1.33 (c) Disc. Fun. = -1.00

Optimization

 \square A simple greedy gives a (1/2)-approximation to the optimal solution.

Algorithm 1 Submodular Dictionary Learning (SDL)

```
Input: G = (V, E), w, K, \lambda and \mathcal{N}
Output: D
Initialization: A \leftarrow \emptyset, D \leftarrow \emptyset
for N_A > K do
\tilde{e} = \operatorname*{argmax} \mathcal{F}(A \cup \{e\}) - \mathcal{F}(A)
A \cup \{e\} \in \mathcal{I}
A \leftarrow A \cup \{\tilde{e}\}
end for
for each subgraph S_i in G = (V, A) do
D \leftarrow D \cup \{\frac{1}{|S_i|} \sum_{j:v_j \in S_i} v_j\}
end for
```

Classification

Object and Face

 \square For a test image y_i , first compute its sparse representation:

$$z_i = \arg\min_{z_i} \|y_i - Dz_i\|_2^2 \ s.t. \ \|z_i\|_0 \le s$$

□ Then the label of y_i is the index i corresponding to the largest element of a class label vector $l = Wz_i$.

Multivariate ridge regression

Human Actions

 Dynamic time warping is employed to align two sequences in the sparse representation domain; next a K-NN classifier is used

- Evaluation Datasets
 - Extended YaleB Database (Face database)
 - Keck Gesture Dataset (Gesture)
 - Caltech101 Dataset (Object)
- Experimental Setup
 - Random face-based features
 - dims: 504 (Extended YaleB)
 - Joint Shape and Motion features
 - dims: 512 (Keck Gesture)
 - Spatial pyramid features
 - dims: 3000 (Caltech101)

Extended YaleB

Classification accuracy comparison

□ Computation time (s) for dictionary training

Dict. size	418	456	494	532	570	608	646	684
SDL	0.9	1.0	0.9	0.9	0.9	1.0	0.9	0.9
K-SVD [1]	52.6	56.1	59.8	64.9	67.9	72.2	76.2	78.0
D-KSVD [35]	53.1	56.9	60.5	65.8	68.1	74.9	77.6	79.2
LC-KSVD [12]	67.2	72.6	78.3	86.5	90.7	97.8	104.4	112.3

- Keck Gesture Dataset
 - Classification accuracy comparison

Computation time (s) for dictionary training

Dict. size	40	60	80	100	120	140	160	180
SDL	1.0	1.0	1.1	1.0	1.0	1.1	1.0	1.0
K-means	1.2	1.1	1.6	1.4	1.8	2.1	2.1	2.2
ME [10]	48.5	57.2	70.2	84.6	91.5	113.1	118.9	130
LiuShah [18]	599.2	597.9	597.2	596.1	593.9	590.3	587.4	582
MMI [26]	64.6	92.6	115.5	140.3	150.1	164.1	184.4	201

Caltech101

Classification accuracy comparison

Training Images	5	10	15	20	25	30
Malik [34]	46.6	55.8	59.1	62.0	-	66.20
Lazebnik [15]	-	-	56.4	-	-	64.6
Griffin [9]	44.2	54.5	59.0	63.3	65.8	67.60
Irani [2]	-	-	65.0	-	-	70.40
Grauman [11]	-	-	61.0	-	-	69.10
Venkatesh [25]	-	-	42.0	-	-	-
Gemert [7]	-	-	-	-	-	64.16
Yang [31]	-	-	67.0	-	-	73.20
Wang [29]	51.15	59.77	65.43	67.74	70.16	73.44
SRC [30]	48.8	60.1	64.9	67.7	69.2	70.7
K-SVD [1]	49.8	59.8	65.2	68.7	71.0	73.2
D-KSVD [35]	49.6	59.5	65.1	68.6	71.1	73.0
LC-KSVD [12]	54.0	63.1	67.7	70.5	72.3	73.6
SDL	55.3	63.4	67.5	70.7	73.1	75.3
SDL	± 0.5	± 0.5	± 0.3	± 0.3	± 0.4	± 0.4

Computation time (s) for dictionary training

Dict. size	306	510	714	918	1122	1326	1530
SDL	37.5	36.7	36.6	36.9	37.1	36.7	36.7
K-SVD [1]	578.3	790.1	1055	1337	1665	2110	2467
D-KSVD [35]	560.1	801.3	1061	1355	1696	2081	2551
LC-KSVD [12]	612.1	880.6	1182	1543	1971	2496	3112

Examples of sparse codes

absolute sparse codes.

D-KSVD

LC-KSVD

Examples of sparse codes

Key References

- 1. J. Wright, A. Yang, A. Ganesh, S. Sastry and Y. Ma. Robust face recognition via sparse representation, TPAMI 2009.
- 2. M. Aharon, M. Elad and A. Bruchstein. K-SVD: An algorithm for designing over-complete dictionaries for sparse representation. Sig. Proc., 2006.
- 3. Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition, CVPR 2010.
- 4. M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel segmentation, CVPR 2011.
- 5. G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 1978