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 Goals 

 Motivations 
Most of recent dictionary learning techniques are iterative 
batch procedures, it is relatively slow close to the minimum. 

 Goals 
 Learn a discriminative and representational dictionary for 
sparse representation efficiently using a greedy algorithm for 
a submodular objective set function. 
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Approaches 

 Approaches 

 A dataset is mapped into an undirected k-nearest neighbor 
graph G=(V, E). The dictionary learning is modeled as a 
graph topology selection problem. A subset of edges A is 
selected from initial edge set E such that the resulting 
graph G=(V, A), contains exactly K connected components 
or clusters. 

G(V, E) G(V, A) G(V,  ) 

EA
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Approaches 

 Approaches 

 A monotonic and submodular objective function for 
dictionary learning consists of two terms: the entropy rate 
of a random walk on a graph and a discriminative term 

 The objective function is optimized by a highly efficient 
greedy algorithm 

  This simple greedy algorithm gives a near-optimal solution 
with a (1/2)-approximation bound [5]. 
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Related Work 
 Sparse Coding has been successfully applied to a variety of 

problems such as face recognition [1]. The SRC algorithm [1] 
employs the entire set of training samples to form a dictionary. 

 K-SVD [2]: Efficiently learn an over-complete dictionary with a small 
size. It focuses on representational power, but it does not consider 
discrimination. 

 Discriminative dictionary learning approaches:  

 Constructing a separate dictionary for each class. 

 Adding discriminative terms into the objective function of 
dictionary learning [3].  

 The diminishing return property of a submodular function has been 
employed in applications such as sensor placement, clustering and 
superpixel segmentation [4]. 
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Preliminaries 

 Submodular Set Function 
               

                                  A set function                    is submodular if    

 

     

              for all                            and                  .  

 

RF
E 2:

F( A1 U {a} )               F( A1 )               F( A2 U {a} )           F( A2 ) ≥ - - 

≥ 

diminishing return property 
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Submodular Dictionary Learning 

 Monotonic and Submodular Objective Set 
Function 

  It consists of an entropy rate term         and a 
discriminative term         : 

 

   

where 
         A:   selected subset of edge set E;  

         NA: number of connected components induced by A 
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Submodular Dictionary Learning 

 Entropy Rate of a Random Walk 

 

      : Stationary probability of vertex                    

        : Transition probability from      to     
i

jiP ,

iv

iv jv

Compactness Homogeneity 
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Submodular Dictionary Learning 

 Discriminative Term 

     : Number of elements from class y in cluster i               
i

yN

Class Pure & A Smaller Number of  Clusters 
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Submodular Dictionary Learning 

 Optimization 
 A simple greedy gives a (1/2)-approximation to the optimal 

solution. 
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Classification 

 Object and Face 
 For a test image yi, first compute its sparse representation: 

 

 Then the label of yi is the index i corresponding to the 
largest element of a class label vector                . 

 Human Actions 
 Dynamic time warping is employed to align two sequences 

in the sparse representation domain;  next a K-NN 
classifier is used 

Multivariate ridge regression 
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Experimental Results 

 Evaluation Datasets 
 Extended YaleB Database (Face database) 

 Keck Gesture Dataset (Gesture) 

 Caltech101 Dataset (Object) 

 Experimental Setup 
 Random face-based features  

          - dims: 504 (Extended YaleB) 

 Joint Shape and Motion features 

          - dims: 512 (Keck Gesture) 

 Spatial pyramid features 

          - dims: 3000 (Caltech101) 
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Experiment Results 

 Extended YaleB 
 Classification accuracy comparison 

 

 

 

 

 

 

 Computation time (s) for dictionary training 
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Experiment Results 

 Keck Gesture Dataset 
 Classification accuracy comparison 

 

 

 

 

 

 

 

 

 

 Computation time (s) for dictionary training 
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Experimental Results 
 Caltech101 

 Classification accuracy comparison 
 

 
 
 
 
 
 
 
 
 

 Computation time (s) for dictionary training 
 

 

15 



      

Experiment Results 

 Examples of sparse codes  

Class 41 in Caltech101 

(55 test images). 

Y axis indicates a sum of 

absolute sparse codes. 

K-SVD 

D-KSVD LC-KSVD 

SRC 
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