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1. Proofs of the Monotonicity and Submodu-

larity Properties of Entropy Rate H(A)

Recall our definition of H(A):

H(A) = −
∑

i

µi

∑

j

Pi,j(A) log Pi,j(A) (1)

where µi is the stationary probability of vi in the stationary

distribution µ and Pi,j(A) is the transition probability from

vi to vj with respect to A.

1.1. Monotonicity

We prove that H(A) is monotonically increasing by
showing H(A ∪ {a}) ≥ H(A), for all a ∈ E\A and
A ⊆ E. Without loss of generality, we assume a = e1,2.
The weights of the self loops for v1 and v2 are given by:

w1,1 = w1 −
∑

j:e1,j∈A∪{a}

w1,j , (2)

w2,2 = w2 −
∑

j:e2,j∈A∪{a}

w2,j . (3)

By the definition of entropy rate in (1), the increase of
entropy rate due to the addition of a to A is computed as:

H(A ∪ {a}) − H(A)

= −
∑

i

µi

∑

j

Pi,j(A ∪ {a}) log Pi,j(A ∪ {a})

+
∑

i

µi

∑

j

Pi,j(A) log Pi,j(A) (4)

= −
∑

i

∑

j

wi

wall

Pi,j(A ∪ {a}) log Pi,j(A ∪ {a})

+
∑

i

∑

j

wi

wall

Pi,j(A) log Pi,j(A) (5)

= −
∑

i

∑

j

wi

wall

Pi,j(A ∪ {a}) log
wiPi,j(A ∪ {a})

wall

+
∑

i

∑

j

wi

wall

Pi,j(A ∪ {a}) log
wi

wall

+
∑

i

∑

j

wi

wall

Pi,j(A) log
wiPi,j(A)

wall

−
∑

i

∑

j

wi

wall

Pi,j(A) log
wi

wall

(6)

= −
∑

i

∑

j

wi

wall

Pi,j(A ∪ {a}) log
wiPi,j(A ∪ {a})

wall

+
∑

i

∑

j

wi

wall

Pi,j(A) log
wiPi,j(A)

wall

+
∑

i

wi

wall

log
wi

wall





∑

j

Pi,j(A ∪ {a}) −
∑

j

Pi,j(A)





(7)

Since
∑

j Pi,j(A ∪ {a}) =
∑

j Pi,j(A) = 1, the last term

in (7) becomes zero. Hence we have

H(A∪{a}) − H(A)

= −
∑

i

∑

j

wi

wall

Pi,j(A ∪ {a}) log
wiPi,j(A ∪ {a})

wall

+
∑

i

∑

j

wi

wall

Pi,j(A) log
wiPi,j(A)

wall

(8)

We notice that in (8), all the terms associated with vertices
other than v1 and v2 are canceled out if a = e1,2. Thus,

H(A∪{e1,2}) − H(A)

= −

{

w1

wall

P1,1(A ∪ {e1,2}) log
w1P1,1(A ∪ {e1,2})

wall

+
w1

wall

P1,2(A ∪ {e1,2}) log
w1P1,2(A ∪ {e1,2})

wall

}

+

{

w1

wall

P1,1(A) log
w1P1,1(A)

wall

+
w1

wall

P1,2(A) log
w1P1,2(A)

wall

}

−

{

w2

wall

P2,1(A ∪ {e1,2}) log
w2P2,1(A ∪ {e1,2})

wall

+
w2

wall

P2,2(A ∪ {e1,2}) log
w2P2,2(A ∪ {e1,2})

wall

}

+

{

w2

wall

P2,1(A) log
w2P2,1(A)

wall

+
w2

wall

P2,2(A) log
w2P2,2(A)

wall

}

(9)

Recall the definition of the transition probability:

Pi,j(A) =











1 −

∑

j:ei,j∈A wi,j

wi
if i = j,

wi,j

wi
if i 6= j, ei,j ∈ A,

0 if i 6= j, ei,j /∈ A.

(10)

Note that Pi,j(A) = 0 if there is no edge connecting vi

and vj . Hence, P1,2(A) = P2,1(A) = 0. From (2), (3) and
the definition of Pi,j , (9) becomes:

H(A ∪ {e1,2}) − H(A)

=
w1,1 + w1,2

wall

log
w1,1 + w1,2

wall

−
w1,1

wall

log
w1,1

wall

−
w1,2

wall

log
w1,2

wall

+
w2,2 + w2,1

wall

log
w2,2 + w2,1

wall

−
w2,2

wall

log
w2,2

wall

−
w2,1

wall

log
w2,1

wall

(11)

=f(
w1,1

wall

+
w1,2

wall

) − f(
w1,1

wall

) − f(
w1,2

wall

)

+ f(
w2,2

wall

+
w2,1

wall

) − f(
w2,2

wall

) − f(
w2,1

wall

) (12)

≥0 (13)
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Note in (12), a convex function f(x) in (0,1) is defined as:
f(x) = x log x. It’s easy to show that the convex function
f(x) is superadditive in (0,1), i.e.,

f(x1) + f(x2) = f

(

(x1 + x2)
x1

x1 + x2

)

+ f

(

(x1 + x2)
x2

x1 + x2

)

≤
x1

x1 + x2

f(x1 + x2) +
x2

x1 + x2

f(x1 + x2)

= f(x1 + x2). (14)

Hence, inequality (13) holds, which completes the proof of

the monotonically increasing property of H(A).

1.2. Submodularity

We prove H(A) is a submodular function by showing

H(A ∪ {a1}) −H(A)

≥ H(A ∪ {a1, a2}) −H(A ∪ {a2}), ∀a1, a2 ∈ E\A
(15)

Based on whether a1, a2 have a common vertex or not,

we compare the value of H(A ∪ {a1}) − H(A) with the

value of H(A ∪ {a1, a2}) −H(A ∪ {a2}) in two cases.

• Case1: a1, a2 share no common vertex. Without loss
of generality, we assume a1 = e1,2 and a2 = e3,4. Ac-
cording to (9), adding a1 to A causes the same weight
changes as adding a1 to A∪{a2} because the addition
of a2 has no effect on the loop weights of v1 and v2.

H(A ∪ {a1, a2}) − H(A ∪ {a2})

=
w1,1 + w1,2

wall

log
w1,1 + w1,2

wall

−
w1,1

wall

log
w1,1

wall

−
w1,2

wall

log
w1,2

wall

+
w2,2 + w2,1

wall

log
w2,2 + w2,1

wall

−
w2,2

wall

log
w2,2

wall

−
w2,1

wall

log
w2,1

wall

(16)

Thus, H(A∪{a1})−H(A)) = H(A∪{a1, a2})−H(A∪{a2})

• Case2: a1, a2 share a common vertex. Without loss

of generality, We assume a1 = e1,2 and a2 = e1,3.

Then the new loop weights for vertex v1 and v2 are

given by:

w′
1,1 = w1 −

∑

j:e1,j∈A∪{e1,2,e1,3}

w1,j = w1,1 − w1,3

(17)

w′
2,2 = w2 −

∑

j:e2,j∈A∪{e1,2,e1,3}

w2,j = w2,2, (18)

where w1,1 and w2,2 here are given by (2) and (3).

Hence

(H(A ∪ {a1}) − H(A)) − (H(A ∪ {a1, a2}) − H(A ∪ {a2})

=

{

w1,1 + w1,2

wall

log
w1,1 + w1,2

wall

−
w1,1

wall

log
w1,1

wall

−
w1,2

wall

log
w1,2

wall

+
w2,2 + w2,1

wall

log
w2,2 + w2,1

wall

−
w2,2

wall

log
w2,2

wall

−
w2,1

wall

log
w2,1

wall

}

−

{

w′
1,1 + w1,2

wall

log
w′

1,1 + w1,2

wall

−
w′

1,1

wall

log
w′

1,1

wall

−
w1,2

wall

log
w1,2

wall

+
w2,2 + w2,1

wall

log
w2,2 + w2,1

wall

−
w2,2

wall

log
w2,2

wall

−
w2,1

wall

log
w2,1

wall

}

(19)

=

{

w1,1 + w1,2

wall

log
w1,1 + w1,2

wall

−
w1,1

wall

log
w1,1

wall

}

−

{

w′
1,1 + w1,2

wall

log
w′

1,1 + w1,2

wall

−
w′

1,1

wall

log
w′

1,1

wall

}

(20)

=g(
w′

1,1 + w1,3

wall

) − g(
w′

1,1

wall

) (21)

≥0 (22)

From (20) to (21), the relationship between w1,1 and

w′
1,1 given in (17) is employed. And g(x) in (21) is

defined as:

g(x) = (x + δ) log(x + δ) − x log x (23)

Here δ =
w1,2

wall
. By taking advantage of the strictly

increasing property of g(x), we arrive at (22).

Showing the two cases above, we conclude that H(A) is a

submodular function.

2. Proofs of the Monotonicity and Submod-

ularity Properties of Discriminative Term

Q(A)

Recall our definition,

Q(A) =
1

C

NA
∑

i=1

max
y

N i
y − NA (24)

where maxy N i
y denotes the maximum element of the count

vector N
i = [N i

1, ..., N
i
m]t for cluster Si, NA is the number

of connected components.

2.1. Monotonicity

We prove that Q(A) is monotonically increasing by

showing:

Q(A ∪ {a}) ≥ Q(A), (25)

for all a ∈ E\A and A ⊆ E.

Given any set of selected edges A and its correspond-

ing graph partitioning SA = {S1, ..., SNA
}, we are only

interested in the nontrivial case in which the two vertices

of a belong to different clusters. Otherwise the addition

of edge a has no impact on the graph partitioning, i.e.,

Q(A ∪ {a}) −Q(A) = 0.
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Without loss of generality, we assume a = e1,2, v1 and
v2 belong to Si and Sj , respectively. The new graph par-
titioning SA∪{e1,2} for A ∪ {e1,2} is similar to the graph

partitioning SA for A except one thing: clusters Si and Sj

are merged into one cluster S∗. Hence,

Q(A ∪ {a = e1,2}) − Q(A) = (
1

C

NA−1
∑

k=1

max
y

N
k
y − (NA − 1))

− (
1

C

NA
∑

k=1

max
y

N
k
y − NA)

=
1

C
(max

y
[N

i
y + N

j
y ] − max

y
N

i
y − max

y
N

j
y) + 1

=
1

C
(max

y
N

∗
y − max

y
N

i
y − max

y
N

j
y) + 1

(26)

By definition,

C =
∑

i

∑

y

N i
y ≥ max

y
N i

y + max
y

N j
y (27)

and with

max
y

N∗
y ≥ 0,

so (26) becomes

Q(A ∪ {a})−Q(A) ≥
1

C
(0 − C) + 1 = 0 (28)

This completes the proof of monotonically increasing

property of Q(A).

2.2. Submodularity

Before starting the proof of submodularity, we want to

introduce the following two properties of a count vector

N
i = [N i

1, ..., N
i
m]t.

(1) (Nonnegative) The elements of the count vector are

all nonnegative, Ni ≥ 0, i = 1, ..., N .

(2) (Subadditivity) Given the new cluster S∗ by merging

clusters Si and Sj , the count of the dominating class for

cluster S∗ is less than the sum of the counts of the dominat-

ing class for Si and Sj , i.e.,

max
y

[N i
y + N j

y ] ≤ max
y

N i
y + max

y
N j

y , (29)

with equality holds only when

arg max
y

N i
y = arg max

y
N j

y

Now we prove that Q(A) is submodular by showing

Q(A ∪ {a1}) −Q(A) ≥ Q(A ∪ {a1, a2}) −Q(A ∪ {a2})

∀a1, a2 ∈ E\A (30)

Again we consider only the nontrivial case in which edge

a1 combines two different subsets Si and Sj . When i = j,

Q(A∪{a1})−Q(A) = Q(A∪{a1, a2})−Q(A∪{a2}) = 0.

Suppose the vertices of a2 belong to clusters Sm, Sn,

respectively. Based on the relationship among i, j, m, n
(i 6= j), we discuss in the following four cases.

• Case1 (trivial): m = n, i.e., the vertices of a2 belong
to the same cluster. Then adding a2 has no effect on
the graph:

Q(A ∪ {a2}) = Q(A),

Q(A ∪ {a1, a2}) = Q(A ∪ {a1}) (31)

Thus Q(A ∪ {a1}) −Q(A) = Q(A ∪ {a1, a2}) −Q(A ∪ {a2}).

• Case2 (trivial): m 6= n, {m, n} = {i, j}, i.e., adding
a2 to the graph has the same effect as adding a1. Thus,

Q(A ∪ {a2}) = Q(A ∪ {a1, a2}) (32)

Together with monotonically increasing property in
(28), we have

(Q(A ∪ {a1}) − Q(A)) ≥ Q(A ∪ {a1, a2}) − Q(A ∪ {a2}) = 0
(33)

• Case3: {m, n} ∩ {i, j} = ∅, i.e., a2 combines two
clusters Sm, Sn that are not Si, Sj .

Q(A ∪ {a1, a2}) − Q(A ∪ {a2})

=
1

C

{

max
y

[Ni
y + N

j
y ] + max

y
[Nm

y + N
n
y ]

− max
y

N
i
y − max

y
N

j
y − max

y
[Nm

y + N
n
y ]

}

+ 1 (34)

=
1

C

{

max
y

[N
i
y + N

j
y ] − max

y
N

i
y − max

y
N

j
y

}

+ 1

= Q(A ∪ {a1}) − Q(A) (35)

• Case4: m ∈ {i, j}, and n /∈ {i, j}. Without loss of
generality, we assume m = i, n = k 6= i, j, i.e., a2
combines two subsets Si, Sk.

(Q(A ∪ {a1}) − Q(A)) − (Q(A ∪ {a1, a2}) − Q(A ∪ {a2}))

=
1

C

{

max
y

[Ni
y + N

j
y ] − max

y
N

i
y − max

y
N

j
y

}

+ 1

−
1

C

{

max
y

[Ni
y + N

j
y + N

k
y ] − max

y
[Ni

y + N
k
y ] − max

y
N

j
y

}

− 1

=
1

C

{(

max
y

[Ni
y + N

j
y ] − max

y
N

i
y

)

−

(

max
y

[N
i
y + N

k
y + N

j
y ] − max

y
[N

i
y + N

k
y ]

)}

(36)

Based on the dominating class labels of clus-

ter Si, Sj and Sk, we compare the val-

ues of
(

maxy[N i
y + N j

y ] − maxy N i
y

)

and
(

maxy[N i
y + Nk

y + N j
y ] − maxy[N i

y + Nk
y ]

)

in

the following three situations:

(a) arg maxy N i
y = arg maxy Nj

y

In this case, Si and Sj share the same dominating
class. From (29) we have,

max
y

[Ni
y + N

j
y ] − max

y
N

i
y = max

y
N

j
y (37)

max
y

[N
i
y + N

k
y + N

j
y ] − max

y
[N

i
y + N

k
y ] ≤ max

y
N

j
y (38)

This implies that (36) is ≥ 0.

(b) arg maxy N i
y 6= arg maxy Nj

y , maxy N i
y ≥ maxy Nj

y
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In this case Si, Sj do not share the same dominating

class, and the dominating class label of Si will become

the dominating class label for the merged cluster of

Si, Sj . Therefore, maxy[N i
y + N j

y ] − maxy N i
y = 0.

Note that the dominating class labels of Sj and Sk

must not be the same. If Sj , Sk shares the same dom-

inating class label and Si has a different dominating

class label, then according to the proposed greedy al-

gorithm, the edge connecting Sj , Sk (referred to as

a3) must already exist in A before considering a1, a2.

However, cycle-free constraint requires that a1, a2, a3

cannot exist at the same time. By this contradiction,

we conclude that Sj , Sk must have different dominat-

ing class labels.

Moreover, taking arg maxy N i
y 6= argmaxy N j

y into

consideration, the dominating class, after merging

Si, Sj , and Sk, can only be either arg maxy N i
y or

argmaxy Nk
y , in both case of which we have

max
y

[Ni
y + N

k
y + N

j
y ] = max

y
[Ni

y + N
k
y ], (39)

which yields that maxy[N i
y + N j

y ] − maxy N i
y =

maxy[N i
y + Nk

y + N j
y ]−maxy[N i

y + Nk
y ] = 0. Thus,

(36) is = 0.

(c) arg maxy N i
y 6= arg maxy Nj

y , maxy N i
y < maxy Nj

y

In this case, the dominating class label for Sj becomes
the dominating class label for the merged cluster of Si,
Sj , i.e.,

max
y

[Ni
y + N

j
y ] − max

y
N

i
y = max

y
N

j
y (40)

Again according to (29),

max
y

[N
i
y + N

k
y + N

j
y ] − max

y
[N

i
y + N

k
y ] ≤ max

y
N

j
y (41)

which implies (36) is ≥ 0.

From the discussion above we prove that (36) is always

≥ 0, i.e.,

Q(A ∪ {a1}) − Q(A) ≥ Q(A ∪ {a1, a2}) − Q(A ∪ {a2}).

Summarizing the four cases above, we conclude that Q(A)
is a submodular function.

3. Proof of Matroid

We claim that the cycle free constraint and the connected

component constraint induce a matroid M = (E, I), where

E is the edge set, and I is the collection of subsets A ⊆ E
which satisfies (a) A is cycle-free, and (b) the graph parti-

tion from A has more than K connected components, i.e.,

NA ≥ K .

M satisfies the following three conditions:

• ∅ ∈ I: It’s obvious that the empty set ∅ induces no cy-

cles. The graph associated with ∅ has N∅ = |V | con-

nected components, where the total number of nodes

|V | ≥ K . Therefore ∅ ∈ I.

• (Hereditary property): Assume A ∈ I, and B ⊆ A.

Denote the the graphs associated with edge set A, B
as GA and GB respectively. Under our constraints

(i.e., A ∈ I) GA is cycle free, and NA ≥ K . B
also satisfies B ∈ I because: (a) GB is cycle free,

since removing edges from GA cannot create cycles.

(b) NB ≥ K , since removing edges from GA cannot

decrease the number of connected components.

• (Exchange property): Suppose A ∈ I, B ∈ I, and

|A| < |B|. Denote the the graphs associated with

A, B as GA, GB respectively. Clearly GA has NA =
|V | − |A| connected components, and GB has NB =
|V | − |B| connected components, where NA > NB .

This means GB has fewer connected components than

GA, i.e., GB must contain some connected compo-

nents, Si, whose vertices are in two different connected

components in GA. Moreover, since Si is connected,

there must exist an edge x ∈ B such that x connects

two vertices in two different components in GA. We

can add that edge x without creating a cycle. Since

NA ≥ K , NB ≥ K , and NA > NB, it must be true

that NA ≥ K + 1. Moreover, adding one edge to a

graph decreases the number of connected components

by at most one. Hence NA∪{x} ≥ K , which satisfies

the connected component constraint. With that being

said, for A, B ∈ I, and |A| < |B|, there exists an

element x ∈ B − A such that A ∪ {x} ∈ I

With the three conditions satisfied, we conclude that M =
(E, I) is a matroid.
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