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1. Proofs of the Monotonicity and Submodu-
larity Properties of Entropy Rate 7{(A)

Recall our definition of H(A):
=D miy Pij(A

J
where p; is the stationary probability of v; in the stationary
distribution p and P; ;(A) is the transition probability from
v; to v; with respect to A.

1.1. Monotonicity

We prove that H(A) is monotonically increasing by
showing H(A U {a}) > H(A), for all @ € E\A and
A C E. Without loss of generality, we assume a = ej ».
The weights of the self loops for v; and vy are given by:

wi,1 = W1 — Z w1,j5, (2)
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By the definition of entropy rate in (1), the increase of
entropy rate due to the addition of a to A is computed as:
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Since ;P j(AU{a}) = >, Pi j(A) = 1, the last term
in (7) becomes zero. Hence we have
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We notice that in (8), all the terms associated with vertices
other than v; and v, are canceled out if @ = ey 2. Thus,
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Recall the definition of the transition probability:
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Note that P; ;(A) = 0 if there is no edge connecting v;
and v;. Hence, P; 2(A) = P51(A) = 0. From (2), (3) and
the definition of P; ;, (9) becomes:
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Note in (12), a convex function f(x) in (0,1) is defined as:
f(z) = xlogx. It’s easy to show that the convex function
f(z) is superadditive in (0,1), i.e.,

f(w1)+f(l'2):f((l'l + z2) - ) +f((1'1 + x2) = )
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Hence, inequality (13) holds, which completes the proof of
the monotonically increasing property of H(A).

1.2. Submodularity

We prove H(A) is a submodular function by showing

H(AU{a1}) —H(A)
> H(AU{al,ag}) —H(AU{GQ}), Vai,as € E\A
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Based on whether a1, as have a common vertex or not,
we compare the value of H(A U {a1}) — H(A) with the
value of H(A U {a1,a2}) — H(A U {az}) in two cases.

e Casel: aq, as share no common vertex. Without loss
of generality, we assume a; = e1,2 and az = e3 4. Ac-
cording to (9), adding a; to A causes the same weight
changes as adding a; to AU {az} because the addition
of as has no effect on the loop weights of v; and vs.

H(AU{a1,az2}) — H(A U {az2})
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Thus, H(AU{a1}) — H(A)) = H(AU{a1,as}) —H(AU {az})

e Case2: a1, as share a common vertex. Without loss
of generality, We assume a; = ej2 and az = e; 3.
Then the new loop weights for vertex v; and vy are
given by:
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where wy,; and w2 here are given by (2) and (3).

Hence
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From (20) to (21), the relationship between w1,; and
w} ; given in (17) is employed. And g(x) in (21) is
defined as:

gx) =(z+d)log(z+d) —xlogz  (23)

Here § = %121 By taking advantage of the strictly

increasing property of g(z), we arrive at (22).

Showing the two cases above, we conclude that H(A) is a
submodular function.

2. Proofs of the Monotonicity and Submod-
ularity Properties of Discriminative Term

Q(4)

Recall our definition,
1 A
A4 =5 ; max N, — Na (24)

where max,, N; denotes the maximum element of the count
vector N = [N}, ..., N} ]! for cluster S;, N4 is the number
of connected components.

2.1. Monotonicity

We prove that Q(A) is monotonically increasing by
showing:

QAU {a}) = Q(A), (25)

foralla € E\Aand A C E.

Given any set of selected edges A and its correspond-
ing graph partitioning S4 = {S1,..., Sn,}, we are only
interested in the nontrivial case in which the two vertices
of a belong to different clusters. Otherwise the addition
of edge a has no impact on the graph partitioning, i.e.,

Q(AU {a}) - Q(A) = 0.




Without loss of generality, we assume a = e 2, v1 and
vy belong to S; and S, respectively. The new graph par-
titioning Sauge, ,3 for A U {e1 2} is similar to the graph
partitioning S4 for A except one thing: clusters .S; and S
are merged into one cluster .S,. Hence,
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This completes the proof of monotonically increasing
property of Q(A).
2.2. Submodularity

Before starting the proof of submodularity, we want to
introduce the following two properties of a count vector
Nt = [N{, ..., N ]t

(1) (Nonnegative) The elements of the count vector are
all nonnegative, N* > 0,5 =1, ..., N.

(2) (Subadditivity) Given the new cluster S, by merging
clusters S; and S, the count of the dominating class for
cluster S, is less than the sum of the counts of the dominat-

ing class for S; and S, i.e.,
max[N; + NJ] < max N + max N, (29)
Yy Yy Y
with equality holds only when
arg max Né = arg max Ng
Y Y

Now we prove that Q(A) is submodular by showing

Q(AU{a1}) — Q(A4) = Q(AU{a1, a2}) — Q(AU{az})
Vai,az € E\A (30)

Again we consider only the nontrivial case in which edge
a; combines two different subsets S; and .S;. When i = j,
Q(AU{a1})-Q(A) = Q(A{ar, as})—Q(AU{az}) = 0.

Suppose the vertices of as belong to clusters S,,, Sy,
respectively. Based on the relationship among %, j, m,n
(i # j), we discuss in the following four cases.

e Casel (trivial): m = n, i.e., the vertices of as belong

to the same cluster. Then adding a» has no effect on
the graph:

Q(A U {a2}) = Q(A),
Q(AU{a1,a2}) = Q(AU{a1}) 31
Thus 9(A U {a1}) — 9(A) = Q(AU {a1,az2}) — Q(AU {a2}).

Case2 (trivial): m # n, {m,n} = {i, j}, i.e., adding
as to the graph has the same effect as adding a;. Thus,

Q(A U {az2}) = 9Q(AU{a1,a2}) (32)

Together with monotonically increasing property in
(28), we have

(Q(AU{a1}) — Q(A4)) > QAU {a1,a2}) — Q(AU {az}) T%g)

Case3: {m,n} N {i,j} = 0, i.e., a2 combines two
clusters Sy, Sy, that are not S;, S;.

Q(AU{a1,az2}) — Q(A U {az})
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Cased: m € {i,j},and n ¢ {i,j}. Without loss of

generality, we assume m = i,n = k # 14,7, Le., as
combines two subsets S;, S.

(Q(AU{a1}) — Q(A4)) — (Q(AU{a1,a2}) — Q(A U {az2}))
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Based on the dominating class labels of clus-
ter S;, S; and S, we compare the val-
ues  of  (max,[N; 4+ Nj] — max, N}) and
(max, [N} + N 4+ Nj] — max, [N, + N}]) in
the following three situations:
(a) arg max, N, = arg max, N
In this case, S; and S; share the same dominating
class. From (29) we have,
mgx[N; + N;] — mfo; = m;lxN; 37
m;xx[N; + N; + N;] — m;xx[N; + N;] < max N; (38)
This implies that (36) is > 0.

(b) arg max, N # arg max, Nj, max, N; > maxy Nj



In this case S;, S; do not share the same dominating
class, and the dominating class label of S; will become
the dominating class label for the merged cluster of
Si, S;. Therefore, max, [N,. + NJ] — max, N; = 0.
Note that the dominating class labels of S; and S
must not be the same. If S}, Sy shares the same dom-
inating class label and S; has a different dominating
class label, then according to the proposed greedy al-
gorithm, the edge connecting S;, Sy (referred to as
agz) must already exist in A before considering a;, as.
However, cycle-free constraint requires that a1, as, as
cannot exist at the same time. By this contradiction,
we conclude that .S;, S;, must have different dominat-
ing class labels.

Moreover, taking arg max, N, # argmax, N into
consideration, the dominating class, after merging
Si, S;, and Sy, can only be either argmax, N; or
argmaxy N;, in both case of which we have

rn;xx[N; +NF+ NI = m?jlx[N;' + N}, (39)

which yields that max, [N, + NJ] — max, N} =
maxy [N; + N; + N;] — maxy[N; + N;] = 0. Thus,
(36)is = 0.

(c) argmax, N, # arg max, N}, max, N, < max, N
In this case, the dominating class label for S; becomes

the dominating class label for the merged cluster of .S},
Sj, i.e.,
max[N, + Nj] = max N}, = max Nj (40)
Again according to (29),
1’115L)([N;+N;c +N;] 7m3x[N;+N§] < m;lxNZ 41)
which implies (36) is > 0.

From the discussion above we prove that (36) is always
>0, e,

Q(AU{a1}) — Q(A) > Q(A U {a1, az2}) — Q(AU {a2}).

Summarizing the four cases above, we conclude that Q(A)
is a submodular function.

3. Proof of Matroid

We claim that the cycle free constraint and the connected

component constraint induce a matroid M = (E, T), where
E is the edge set, and 7 is the collection of subsets A C E
which satisfies (a) A is cycle-free, and (b) the graph parti-
tion from A has more than K connected components, i.e.,
Ny > K.

M satisfies the following three conditions:

e () € Z: It’s obvious that the empty set () induces no cy-
cles. The graph associated with () has Ny = |V| con-
nected components, where the total number of nodes
|[V| > K. Therefore ) € 7.

e (Hereditary property): Assume A € 7, and B C A.

Denote the the graphs associated with edge set A, B
as G4 and Gp respectively. Under our constraints
(ie, A € I) G4 is cycle free, and Ny > K. B
also satisfies B € 7 because: (a) Gp is cycle free,
since removing edges from G4 cannot create cycles.
(b) Ng > K, since removing edges from GG 4 cannot
decrease the number of connected components.

(Exchange property): Suppose A € Z, B € Z, and
|A| < |B|. Denote the the graphs associated with
A, B as G 4, Gp respectively. Clearly G4 has Ny =
|V| — |A| connected components, and Gp has Np =
|V| — | B| connected components, where Ny > Np.
This means G'p has fewer connected components than
G4, i.e., Gp must contain some connected compo-
nents, S;, whose vertices are in two different connected
components in G 4. Moreover, since .S; is connected,
there must exist an edge € B such that x connects
two vertices in two different components in G 4. We
can add that edge = without creating a cycle. Since
Ny > K, Ng > K, and Ng > Npg, it must be true
that Ny > K + 1. Moreover, adding one edge to a
graph decreases the number of connected components
by at most one. Hence Ny} > K, which satisfies
the connected component constraint. With that being
said, for A, B € Z, and |A| < |B|, there exists an
elementz € B — Asuchthat AU {z} €T

With the three conditions satisfied, we conclude that M =
(E,7) is a matroid.



