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Abstract

Dictionary learning has been applied to various com-

puter vision problems, such as image restoration, object

classification and face recognition. In this work, we propose

a tracking framework based on sparse representation and

online discriminative dictionary learning. By associating

dictionary items with label information, the learned dictio-

nary is both reconstructive and discriminative, which better

distinguishes target objects from the background. During

tracking, the best target candidate is selected by a joint

decision measure. Reliable tracking results and augmented

training samples are accumulated into two sets to update

the dictionary. Both online dictionary learning and the pro-

posed joint decision measure are important for the final

tracking performance. Experiments show that our approach

outperforms several recently proposed trackers.

1. Introduction

Although visual tracking has been widely investigated

for many years, it is still challenging to perform robust

tracking under complex scenarios, such as pose variance,

occlusions and cluttered backgrounds. Various algorithms

have been proposed to deal with different scenarios in

visual tracking with the focus on appearance modeling and

decision strategy design [10, 1, 24, 3, 14, 15, 9, 30, 8].

Recently, an increasing number of studies apply sparse

coding to visual tracking and generate state-of-the-art

results [20, 16, 38, 12, 37, 36, 35].

With superior representative ability, sparse represen-

tations can capture the most essential information from

a training set and are very robust to noise, which are

desirable for appearance modeling in visual tracking since

it is not feasible to maintain an arbitrarily large training

set explicitly. However, sparse representation based

approaches have some drawbacks. First, previous methods

either leave the dictionary unchanged during tracking [16]

or update it by simply using new samples as dictionary

items [12, 38]. Dictionary update is crucial for dealing

with changes in appearance, pose and brightness. However,

methods using static dictionaries or heuristic dictionary

update are unlikely to construct dynamic dictionaries

which characterize changing objects well. Additionally,

many sparse coding based trackers [20, 12, 37, 36, 35]

seek to minimize the reconstruction error to increase the

representative power of the learned dictionary. However,

considering visual tracking as a binary classification

problem, a dictionary learned by minimizing reconstruction

error might not have sufficient discriminative power to

differentiate the foreground from the background.

Motivated by previous works, we attempt to exploit the

discriminative ability of sparse representations for better ap-

pearance modeling. We present an online discriminative

dictionary learning (ODDL) algorithm for visual tracking

which enforces both the reconstructive and discriminative

capacity of the dictionary. Apart from the reconstruction

error, a specific class label is associated with each dictionary

item to enforce discriminability during dictionary learning.

In this way, the ODDL algorithm learns a sparse dictionary

and a linear classifier simultaneously. The quality of each

tracking candidate is measured based on a linear combina-

tion of a quadratic appearance distance and a classification

error instead of relying on only one of them. To account

for target appearance changes, the ODDL algorithm adap-

tively updates dictionary items and the classifier given new

samples in a principled way.

Our contributions are three-folds. First, the ODDL al-

gorithm focuses on both the discriminative and reconstruc-

tive power of the dictionary in appearance modeling. The

dictionary learning is performed in a joint manner, where

the discriminative and reconstructive power are enforced

in a unified algorithm. The learned dictionary is able to

represent the object well and differentiate the object from

the background simultaneously. Second, we propose a joint

decision measure to evaluate the reliability of candidates

to improve tracking accuracy, in contrast to previous work

which only relies on reconstruction error. Finally, the dic-

tionary learned by our approach captures changes to the

object’s appearance through online updating with a set of



adaptively selected, reliable samples. To further acceler-

ate the update, we utilize a batch online learning technique

which reduces the computational complexity in optimiza-

tion. To the best of our knowledge, this is the first work

attempting to incorporate both discriminability of a dictio-

nary and efficient online dictionary learning into a unified

framework for visual tracking.

2. Related work

There is a rich literature on visual tracking. Several clas-

sic algorithms have been proposed and demonstrated im-

pressive performance. In [24], an incremental visual track-

er (IVT) using holistic features is presented, but it is less

effective in handling high levels of occlusion or non-rigid

distortion. The Fragment-based tracker [1] utilizes local

patches to address partial occlusion; tracking is done by

combining votes of matching local patches using a static

template. In [3], an algorithm extends multiple instance

learning to an online setting for object tracking, while [25]

extends the tracking-by-detection framework with multiple

modules for reducing drifts. The visual tracking decompo-

sition (VTD) approach [15] fuses multiple motion and ob-

servation models to account for appearance variation with-

out the discriminative ability to separate foreground from

background.

Due to the strong representative capcity of sparse cod-

ing, many sparse representations have been applied to visual

tracking and achieved impressive results. [20] was the first

to apply sparse representations to visual tracking. However,

it simply uses holistic object samples as templates for the

dictionary, without consideration of the background infor-

mation and computes sparse codes by ℓ1 minimization. No

dictionary learning algorithms and systematic update strate-

gies are adopted, which makes the tracker sensitive to object

changes. [16] constructs a dictionary using a K-selection

approach before tracking starts. Although it considers back-

ground information during dictionary construction, the dic-

tionary is fixed during the entire tracking procedure, thus

might not be adaptive to new samples. To better improve

the discriminative power, [38] combines a sparsity-based

discriminative classifier with a generative model based on

both holistic and local representations, where spatial infor-

mation is also encoded. Nevertheless, the two parts are

independent and combined in a heuristic way. [12] propos-

es an alignment pooling approach to obtain global sparse

representations from local patches. The templates are up-

dated to capture object changes by replacing old templates

by new ones, but no dictionary learning is adopted. [37]

applies the multi-task learning framework using the group

sparsity constraints among candidates, where each candi-

date can be considered as one task. Similarly, [36] extends

the approach in [37] by imposing low-rank constraints on

the joint optimization of the candidate groups. However,

both focus more on candidate selection than good appear-

ance modeling using sparse representations. [35] also repre-

sents candidates by the target and background templates to

improve the tracker’s discriminative ability. Without learn-

ing technique, arbitrary selected templates may not account

for object appearance changes well. [29] is closely relat-

ed to our work in that it also incorporates the discrimi-

native power into standard sparse representations by learn-

ing a classifier. Nevertheless, the dictionary and classifi-

er are learned separately rather than jointly; additionally,

the two-stage tracking approach significantly increases the

complexity and makes the tracker unsuitable for any online

applications. Our work also differs from some other recent

trackers based on sparse representations, which do not learn

a dictionary [4], do not use joint decision to update the

dictionary [31], or apply non-negativity constraint to the

objective function to learn sparse codes [28].

To improve the representative and discriminative power

of dictionaries, many dictionary learning approaches have

been proposed recently. Unsupervised dictionary learning

algorithms aim to minimize the residual for image recon-

struction. Specifically, group features with k-means cluster-

ing are used in [27]. The K-SVD algorithm [2] generalizes

k-means clustering to learns an over-complete dictionary;

semantic relationships between dictionary items are also in-

cluded in [11]. Dictionaries learned by these algorithm-

s reconstruct the objects well but may not be suitable for

classification tasks. Recently, supervised dictionary learn-

ing has been introduced for better classification. A simple

method is to learn a dictionary for each class label, and a

test sample is then classified using the label which generates

the smallest reconstruction error [21, 19, 18, 26]. Class-

specific dictionaries [23]and multiple category-specific dic-

tionaries with a shared common dictionary [39] have also

been developed. In [19, 18, 22, 5, 34], discriminative terms

are included in the objective function. A structured dictio-

nary with class labels via Fisher discriminative criterion is

learned in [33]. However, we note that none of the above

dictionary learning algorithms have been applied to visual

tracking efficiently and effectively. In this work, we incor-

porate the discriminative dictionary learning into a tracking

framework and tackle the problems of insufficient training

samples and efficient online update.

3. Online discriminative dictionary learning

3.1. Problem formulation

Given a set of training samples X = {x1,x2, ...,xn} ∈
R

d×n with class labels Y = {−1, 1}, our goal is to learn

a compact dictionary which is discriminative to distinguish

the object from the background. Each xi is a feature vector

extracted from an image region corresponding to a positive

sample (target object) or a negative sample (background).



Given a dictionary D = {d1,d2, ...,dk} ∈ R
d×k with k

items, xi can be reconstructed by a linear combination of a

few items from the dictionary, xi ≈ Dci, where ci ∈ R
k is

the sparse code of xi and can be computed by:

ci = argmin
c

‖xi −Dc‖2 + λ‖c‖1 (1)

where λ is a parameter to balance sparsity and the recon-

struction error. To learn a discriminative dictionary, ci can

be used as a feature descriptor and incorporated into a super-

vised learning framework:

min
D,W

∑

i

ℓ(yi, f(ci,W)) + λ ‖W‖
2
F (2)

where ℓ is the loss function and f is a classifier with clas-

sification parameters W ∈ R
m×k. Motivated by [13], we

assign a specific label to each dictionary item in Equation 2.

We hope that the samples from class m will typically be

represented by the dictionary items from class m. In addi-

tion, in order to make the learned D good for classification,

we learn the classifier and the dictionary simultaneously.

Hence we incorporate an ideal sparse coding error and a lin-

ear regression loss into the objective function of dictionary

learning

min
D,W

∑
i

ℓ(D,W;xi, fi, li) + λ ‖W‖
2
F

s.t. ci = argmin
c

‖xi −Dc‖+ γ‖c‖1, i = 1, ..., n

(3)

where ℓ(D,W;xi, fi, li) = (1− µ)‖fi −Wci‖
2
2 + µ‖li −

ci‖
2
2 is the loss function given a new sample xi, fi and li.

‖xi − Dci‖
2 is the reconstruction error. ‖li − ci‖

2 is the

ideal sparse code error, where li = [li,1, li,2, ..., li,k]
T =

[1, ..., 0, 1, ..., 0]T ∈ R
k is an ideal sparse code for xi. If

li,k = 1, the training samples xi and dictionary item dk

share the same label, while li,k = 0 means they belong to

different classes. ‖fi−Wci‖
2 is the quadratic loss for linear

regression. fi = [0, ..., 1, ..., 0]T ∈ R
m is the label vector

for xi where the non-zero position indicates the class label

of xi. m is set to 2 for the tracking problem. The parameter

µ controls the contributions of the ideal sparse code error

and the linear regression error.

The dictionary D learned from Equation 3 is both recon-

structive and discriminative since we impose the label infor-

mation for dictionary items and classification error during

the optimization.

3.2. Optimization

This objective function in Equation 3 is nonlinear and

nonconvex, so we resort to stochastic gradient descent. The

gradient with respect to W is

∂ℓ

∂W
= (1− µ)(Wci − fi)c

T
i + λW (4)

However, the dictionary D is not explicitly defined in ℓ but

implicitly defined on the sparse code ci. To obtain the gra-

dient with respect to D, we adopt the implicit differentiation

algorithm on the fixed point equations as in [17, 32]. By

applying the chain rule we obtain

∂ℓ

∂D
=

∂ℓ

∂ci

∂ci
∂D

(5)

where ∂ℓ
∂ci

= (1−µ)WT (Wci−fi)+µ(ci− li). To calcu-

late ∂ci

∂D
, we define the fixed point equation DT (Dc−x) =

−λsign(c) where the sign function is applied to the ele-

ments of c individually. Then we obtain the derivative of D

by ∂c∆

∂D∆
= (DT

∆D∆)
−1(

∂DT

∆
x

∂D∆
−

∂DT

∆
D∆

∂D∆
c), where ∆ indi-

cates the indices of all non-zero values in c and ∆̄ indicates

the indices of all zeros values. We define an auxiliary vari-

able ϕ ∈ R
k where ϕ∆̄ = 0 and ϕ∆ = ∂ℓ

∂ci
(DT

∆D∆)
−1.

Therefore, Equation 5 is calculated as

∂ℓ

∂D
= −DϕcTi + (xi −Dci)ϕ

T (6)

In this way, the gradients with respect to W and D are

available. We use the learning rate used in [17] which is

set to min(η, ηi0/i) where η is a constant, i0 = M/10 and

M is the iteration number. The online learning procedure is

presented in Algorithm 1.

Algorithm 1 Online Discriminative Dictionary Learning

Input: Training samples X ∈ R
d×N with labels Y ∈

R
N , W0, D0, L, γ, λ, M

Output: New W and D

for m = 1 to M
Permute training samples X

for i = 1 to N
Derive fi from yi;

Compute sparse code ci using Equation 1;

Find the active set ∆i and compute the auxiliary

variables ϕi;

Set the learning rate ηm = min(η, ηi0/i);
Compute the gradient of W and D using Equation 4

and 6;

Update W and D by

Wm = Wm − ηm
∂ℓi

∂Dm , Dm = Dm − ηm
∂ℓi

∂Wm

end for

Let Wm+1 = Wm and Dm+1 = Dm

end for

3.3. Initialization

We run K-SVD [2] on positive and negative samples sep-

arately to form two dictionaries with the same size. Then we



combine them together to form the initial dictionary D0.

During subsequent learning, the label for each dictionary

item remains unchanged since we only update the value of

di but keep its label. Given the initial D0, we compute the

sparse code ci for xi to form the matrix C containing sparse

codes of all samples, and then apply the ridge regression

model: W = argminW ‖F − WC‖2 + λ1‖W‖22 to ini-

tialize W0, where F is the label matrix for X. The solution

to this model is W = FCT (CCT + λ1I)
−1.

3.4. Classification

Once we have learned the dictionary, we can classify

a test sample x. The key idea is combining the similarity

between x and the training samples with the classification

score from the classifier. Given a new sample x, we first

compute its sparse code c based on Equation 1. Then, a

joint decision measure during testing is defined as

ε(x) = ‖xtr −Dc‖2 + ρ‖f −Wc‖2 (7)

where xtr is the weighted average of the elements in a set

(see Sec. 4), ‖xtr −Dc‖2 is the quadratic appearance dis-

tance between the reconstructed sample Dc and xtr, ‖f −
Wc‖2 is the linear regression loss and ρ is a constant to

control the contribution of the linear regression loss. f =
[1, 0]T is a label indicator which determines a perfect posi-

tive sample. By using the joint decision measure, we have a

more reliable decision score for the sample x.

4. Tracking procedure

In the first frame, the target is annotated with a bound-

ing box x1 = (c1x, c
1
y, s

1), where (c1x, c1y) is the centroid

position and s1 is its scale. The superscripts of variables

denote frame indices. We randomly and repeatedly shift the

bounding box by a few pixels around x1 to obtain positive

samples X+, and then shift it far away from x1 to obtain

negative samples X− without overlap with X+, to obtain

D0 and W0 as described in Section 3.3. Tracking is done

by inferring the current state xt of the target from previous

states. xt is selected from P candidates which are randomly

sampled around the previous state xt−1 from a Gaussian

distribution p(xt|xt−1). We choose the candidate with the

smallest joint decision error ε using Equation 7 as the track-

ing result.

To compute the reconstruction error εrec = ‖xtr−Dc‖2

in Equation 7, we accumulate the feature extracted from

the bounding box at the optimal location into a set T. The

optimal location is determined by the tracking result using

our deterministic tracker. Optimal locations from current

frames are added to T while those from older frames are

deleted from T , so that T has a fixed number of elements,

denoted as U1. We associate with each element in T the

weight w = e−ε, where ε is the joint decision error. xtr in

Equation 7 is then computed as the weighted average of the

elements in T since elements in T with different reliability

should have different importance on the combined sample

xtr. Initially, T contains just one element - the bounding

box used to initialize the tracker. Its weight is 1.

To update D and W periodically, we construct another

set, S. In each frame, after determining the optimal loca-

tion of the bounding box, we randomly sample bounding

boxes around the optimal location as positive samples, and

far away from the optimal location as negative samples.

By controlling the distance from the optimal location, we

ensure that most negative samples contain pure background

so that they differentiate from the target to the most extent.

These samples are added to S. When S reaches a critical

size U2, we apply the ODDL algorithm to update the dictio-

nary, and then empty S.

When accumulating elements into T and S, the tracking

result may contain significant noise and thus is not reliable

if the optimal location of the bounding box determined by

our tracker has a high reconstruction error εrec = ‖xtr −
Dc‖2 or a high classification error εcls = ‖f − Wc‖2. In

this case, we skip this frame to avoid introducing noise into

T and S. A visualization of the construction of sets T and

S is presented in Figure 1. The entire tracking procedure is

summarized in Algorithm 2.

5. Experiments

5.1. Experiment Setting

We implemented our tracker in Matlab without code op-

timization. Since we do not update the dictionary every

frame, our implementation is very efficient. The average

fps is 5; online dictionary learning takes a few seconds on

an i7 3.4GHz desktop with 12G memory. The parameter

settings are as follows. To avoid inefficient pooling from

local patches, the feature representation for the object in our

work is a 496-dimensional histograms of oriented gradients

(HoG) feature [6] as it performs better than color features.

The dictionary size is fixed to 200 which contains 100 items

for positive samples and 100 items for negative samples.

More items lead to higher accuracy but slow down the track-

er during tracking. Experiments show that using 200 items

achieves a good trade-off between accuracy and efficiency.

The iteration numbers for initialization and online learning

are 5 and 30, respectively. Online learning rate is 0.2. In

the first frame, both the numbers of positive and negative

samples are 200 and both the numbers for update are 100.

For tracking, U1 = 20 and U2 = 5 are for T and S. The

candidate number of random samples is 800 in each frame.

These parameters are empirically determined and fixed for

all sequences.

We compare our tracker with 8 state-of-the-art trackers

on 9 public sequences from [24, 3, 15, 30, 12]. To com-



Figure 1. Construction of sets T and S. In frame It, the optimal location of the bounding box is added into T for joint decision error

evaluation in frame It+1. Positive samples around the optimal location and negative samples far from the optimal location are added into

S for online dictionary learning.

Algorithm 2 Tracking by ODDL

Input: Frames I1, I2, ..., It.
Output: Tracking results in each frame x1, x2, ..., xt

Initialization It (t = 1)

Given initial x1 = (c1x, c
1
y, s

1), sample N+ positive

and N− negative samples;

Extract features to form X with label Y;

Initialize D0 and W0;

Add X into set S, and add the initial state x1 into

set T ;

For each new frame It (t > 1)

Sample P candidates around the tracked object

xt−1 according to distribution p(xt|xt−1) and ex-

tract features;

Compute the sparse code c for each candidate;

Apply Equation 7 to each candidate to compute ε
using D, W and elements in T ;

Select the candidate with the smallest ε as the track-

ing result xt;

Sample N+
new positive samples around xt and N−

new

negative samples far away from xt to obtain new

samples Xnew;

Add tracking result xt into T and Xnew into S;

If length(T ) > U1, remove the oldest element

from T ;

If length(S) = U2, apply Equation 3 to all ele-

ments in S to update D and W; then empty S for

future samples;

Output xt and proceed to the next frame It+1.

pare the performance of our tracker with other state-of-the-

art sparse representation based trackers, we choose the ℓ1
tracker [20], local sparse appearance tracker (LSK) [16],

multi-task tracker (MTT) [37] and two-stage sparse rep-

resentation tracker (TSP) [29] in our experiments. 4 clas-

sic trackers are included, which are the incremental visual

tracking (IVT) [24], FragTrack [1], visual tracking decom-

position (VTD) tracker [15] and Multiple Instance Learning

(MIL) tracker [3]. The test sequences include common sce-

narios in visual tracking, such as fast motion, pose changes,

occlusion, scale change and blurring. Therefore, they can

verify the effectiveness of our tracker thoroughly.

Some qualitative tracking results are shown in Figure 2,

and quantitative comparisons are summarized in Table 1

and 2. Results of our tracker are averaged from 5 run-

s on each sequence. For quantitative results, we use the

average center location error (CLE) and successful tracking

rate (STR). In computing STR, we employ the PASCAL

score [7] which is obtained by s = area(RGT∩RT )
area(RGT∪RT ) where

RGT and RT are groundtruth region and tracked result.

5.2. Results

Our tracker is able to handle various scenarios in the

testing sequences, including fast motion, pose changes, oc-

clusion, scale change and blurring.

In the animal sequence, the target object undergoes

large motion and some frames are blurred. Most tracking

methods fail (IVT and Frag) or drift far away from the

groundtruth (ℓ1 and LSK). The MIL, MTT and our method

produce comparable results, but our method has better

STR, which indicates more stable results.

In the car4 and singer sequences, the scale of the tar-

get objects greatly changes and there are large illumination

variations. Our tracker produces the best and second best

STR, respectively, though its CLE does not outperform that

of the ℓ1 tracker.

In the david sequence where the person displays a variety

of poses, our method outperforms MIL, VTD, Frag and

MTT method. Additionally, the STR of our method is far

better than these methods, and comparable to the results of

the IVT, LSK and ℓ1 trackers. In the sequence bolt, the

running athlete Bolt exhibits significant pose changes. Our

tracker achieves the best results in terms of CLE and STR,

both of which are far better than the compared trackers.

The ℓ1 tracker generates similar CLE to our tracker. But its

inability to adjust the size of the tracking window properly

leads to low STR.

In the football sequence, the athlete runs across the foot-



#12 #21 #32 #50 #64

#186 #204 #233 #351 #612

#155 #182 #261 #305 #391

#170 #224 #282 #294 #336

#60 #112 #146 #223 #291

#107 #175 #390 #440 #563

#32 #128 #156 #231 #307

#118 #265 #430 #849 #1037

#130 #196 #300 #343 #425

Figure 2. Tracking results using our tracker and state-of-the-art trackers on sequences animal, car4, david, football, singer, stone, bolt, girl

and twinnings.

ball field with large pose variance; there is also partial oc-

clusion at the end of the sequence. The IVT, MIL and

our method produce comparable results in terms of CLE

and STR. When occlusion occurs or the athlete undergoes

large motion, the ℓ1, Frag, LSK and VTD methods are not

able to locate the target object accurately. Moreover, the



STR’s of these methods are much lower than IVT, MIL

and our method. The stone sequence is challenging because

there are many stones in the background which share similar

color and shape with the target object. During the sequence,

the target object is also occluded by another stone with sim-

ilar appearance, which adds more difficulty to successful

tracking. Our method successfully keeps track of the target

object with the best STR, though the IVT and MTT trackers

produce lower CLE.

The sequence girl shows a more complex scenario.

Despite the full occlusion, blurring and scale changes, our

tracker is able to keep track of the object with the best CLE

and STR. All the other trackers fails when the occlusion

occurs. On sequence twinnings, our tracker achieves the

second best result in terms of STR.

5.3. Discussion

We evaluate the reliability of our joint decision measure

to demonstrate the importance of combing the quadratic

distance (between testing sample and T ) and linear regres-

sion loss. Additionally, we also deactivate online dictio-

nary learning or adopt blind update every frame to see how

the online dictionary learning affects tracking performance.

The quantitative comparisons are summarized in Table 1

and Table 2.

If we use only the reconstruction error εrec or

classification error εcls, the results are worse than the

method using the joint decision measure both in terms

of CLE and STR on all sequences. Therefore, the

joint decision measure strategy indeed improves the

tracking accuracy. Moreover, removing the online update

deteriorates tracking performance, resulting in larger CLE

on 6 sequences, and lower STR on 7 sequences. On the

other hand, if we blindly update the dictionary every frame

without considering the confidence of εrec and εcls, the

tracker is prone to learn the appearance of the background,

leading to higher CLE on 6 sequences and lower STR on 7

sequences. Note that in sequences car4, david and football,

the tracker with blind update outperforms the tracker with

adaptive update strategy in terms of CLE. We conjecture

that the reason is that the target objects in these sequences

do not change appearance abruptly. Therefore, even we

blindly update the dictionary using all tracked results, the

dictionary does not learn much from the background.

From the above experimental results, we conclude that

the online learning of dictionary and joint decision measure

both contribute to the performance of the proposed tracker.

6. Conclusion

We presented a tracking framework based on sparse

representation with online discriminative dictionary

learning. The learned dictionary is both reconstructive

and discriminative, which allows it to better distinguish

the target from the background. During tracking, the best

candidate is selected by jointly evaluating the quadratic

appearance distance and classification error. Reliable

tracking results and augmented training samples are

accumulated into two sets respectively for ODDL to update

its dictionary. Experimental results demonstrate that our

method performs favorably against state-of-the-art trackers

and is able to handle various scenarios. Both the online

dictionary learning and joint decision measure contribute

to the good tracking performance of our tracker.
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